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1 Overview

I began this research (unofficially) in the Fall of 2001, when I came across Paul
Bourke’s page on randomly generated strange attractors [20]. I experimented a
great deal with his program to create two dimensional images of attractors based
on randomly selected parameters. In a program that I developed, I applied his
techniques to three dimensions. This program produced the same sort of objects,
but in three dimensional space. My program, however, required many more
parameters (a total of ten), which would be randomly generated to produce
a vast assortment of orbits, some of which would be the intriguing strange
attractors I was after. Eventually I started to wonder about how the images
would change when their parameters were varied, and I wrote a small program
to make maps of a two dimensional slice of the parameter space. These maps
contained some fascinating structures, and some seemingly fractal behavior.
This interested me greatly, so I decided to pursue this research formally. I have
since written at least a dozen programs to peel away some of the patterns hidden
within parameter space, and this paper discusses what I have discovered.

Over the course of this paper, several large areas of dynamics will be ad-
dressed. I will discuss quadratic systems and the case of the Hénon map, and
then lead into a general discussion of dynamics as a whole. The three partic-
ular sets of dynamics are complex dynamics, continuous systems, and discrete
systems. Each of these types of systems has some impact on the analysis of
strange attractors. Particularly, there are some fascinating analogies that may
be made to complex dynamics.

In general, dynamics is a very broad field and its subfields have been thor-
oughly studied for the most part, however, the analysis of these systems tends
to take place mainly in the phase space. The parametrical properties of sys-
tems are somewhat harder to investigate, and are less well understood. This
paper is aimed towards observing parametrical qualities in a variety of classes
of systems; and understanding how certain tools, such as Lyapunov exponents,
translate between these different systems.

1.1 Goals

In my initial investigation of the parameter space around randomly chosen
strange attractors, I saw a variety of peculiar fractal properties in the param-
eter space maps. In the regions which diverge to infinity, there are features
that would have self similar structure. It was conceivable that the entire space,
not just any cross section, had self similar structure and was fractal. However,
some other problems became evident. What initial point should be used, and
what changes as that is varied? Why are some cross sections smooth and others
jagged? What do the maps say about the more detailed behavior of the orbits
in those regions of parameter space? Are there regions of the map which only
produce orbits with one cycles, or two cycles, and so on? The purpose of this
research was to explore and begin to understand these dynamics, investigating
and potentially answering as many of these questions as possible.

The color images on the following page are some of the original parameter
maps that I had made. Note the strange self similar structure in the last one.
This appeared to be indicative of a fractal structure originally, but after this cur-
rent research, the black regions were likely areas where the chosen initial point
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Figure 1: Figure 2: Figure 3: Figure 4:

did not fall within the basin of attraction for the attractor. The importance of
the choice of initial point will be described in detail later.

1.2 Dynamical Systems

Dynamics involves the study of a point in a metric space which is being moved
about by either a function in discrete steps, or by a differential equation govern-
ing its trajectory. Most of this paper shall be concerned with discrete systems,
but continuous systems will be discussed in Section 5. Suppose our system is
discrete, and we are observing the iterates of a point x. Depending on the initial
point and the function, one of the following will occur:

1. The point stays fixed

2. The point is in an n-cycle, and the nth iterate of x is x itself.

3. The point approaches a fixed point

4. The point approaches a cycle

5. The orbit of the point is unbounded

6. The point does none of the above; it remains bounded and neither cycles
nor approaches a cycle

In the last example, the behavior is typically described as chaotic, and this is
the case where it is possible to find strange attractors.

In this paper we shall examine relatively simple systems with a low dimen-
sion, from a geometrical perspective. In cases where the system is complicated
or its dimension is high, it is more appropriate to use statistical analysis to
extract useful information from the orbits of points. This kind of study is called
egrodic theory, which makes use of invariant probability measure over the phase
space. This paper focuses on geometrical analysis of systems, specifically regard-
ing fixed points and cycles, and the overall fractal structure of certain regions
in both parameter and phase space. As such, ergodic theory and the issues it
raises do not bear much of a part in this paper, but is worth mentioning for
reference.

Typically when one investigates a dynamical system, it is in order to predict
the system’s long term behavior. Geometric analysis focuses on the properties
of attracting points and cycles, and observes what points fall into what cycles.
The behavior of fixed points and cycles tends to govern the entire dynamics of
the system, and by understanding what the fixed points do, it is usually possible
to make some inferences about the orbits of points under the system.
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2 Preliminaries and Notation

There are a few terms and basic habits of notation that shall be used throughout
this paper. Let X = RN be the phase space or point space. Typically we are
concerned with a function f ∈ X → X that maps X onto itself. Usually f is
parameterized by some a ∈ P in the parameter space, P ⊂ RM . When the
distinction between different parameters is important, we shall use the term
fa. Both X and P, by being subsets of Euclidean space, are metric spaces,
and occasionally we will use some norm ‖ · ‖ for analytic purposes on one of
those spaces. Usually the exact norm is not important, but will be referred to
specifically, when it is relevant.

In subsequent sections I shall repeatedly refer to matrix and vector norms,
but the results within do not usually depend on which base norm is used. The
matrix norm is always derived from the vector norm as follows:

‖A‖ = max
‖x‖=1

‖Ax‖

We are concerned with the long term behavior of points in the phase space
under iterations of f . Consider x0 as an initial point, the n-th iterate of f on
x0 is defined as fn(x0). Depending on the function and the initial point, the
point may do one of several things.

An orbit may be unbounded, in which case, ∀s ∈ R, ∃n ∈ N, such that
‖fn(x0)‖ > s. Specifically, if the orbit is unbounded, and if ∀s ∈ R, ∃N ∈ N
such that ∀n > N , ‖fn(x0)‖ > s, then the point is said to diverge to infinity.
If f(x0) = x0, then x0 is fixed. If fp(x0) = x0, where p is the least such
number such that this holds, then x0 is periodic with period p. Fixed points
are naturally periodic with period 1. Unless chosen carefully, a point will not
start out fixed or cyclic, but may tend towards a fixed point or a cycle. A point
x0 tends to a cycle with period p if ∃y ∈ X which is cyclic with period p,
and ∀ε > 0, ∃N ∈ N such that ∀n > N , ‖fn(x0)− fn(y)‖ < ε. If none of these
occur, then x0 is both bounded under f and it does not fall into any sort of
cyclic behavior. In this situation the point is almost certainly chaotic.

It is fairly important to clearly define the term chaos. The term is frequently
used, and often misused, but it does describe a clear mathematical property of
dynamical systems. We say a system is chaotic at a point x0 if iterates of
points arbitrarily close to x0 become distant from the corresponding iterates
of x0 under applications of f . More precisely: ∃δ > 0 such that ∀ε > 0,
∀y ∈ Bε(x0)\{x0} implies that ∃N ∈ N such that d(fN (y), fN (x0)) ≥ δ. For
our purposes, these iterates must remain bounded: f = x 7→ 2x is may not be
defined as chaotic, even though distance between points doubles under f . In
the scope of this paper, an unbounded orbit will not considered to be chaotic,
even though there may be bijective transformations that may convert the orbit
between bounded and unbounded coordinate systems.

Fixed points may attract or repel nearby points. It will be demonstrated via
Lemma 1 that if x0 is fixed, and the norm of the derivative, ‖f ′(x0)‖, is less
than one, then that particular point draws in its neighbors. In this case, ∃ε > 0,
∃C < 1 such that ‖f(x)−f(x0)‖ = ‖f(x)−x0‖ ≤ C‖x−x0‖. When this occurs
the point is said to be strongly attracting. With a strongly attracting fixed
point, the function contracts balls around x0. The term “strong” is really quite
appropriate: it will be seen later that some fixed points may draw in nearby
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points, but not have this extra condition, those are called weakly attracting
fixed points. With a weakly attracting fixed point, there is an open ball around
x0 such that every point in the ball tends towards x0. That is, ∃ε > 0 such
that ∀y ∈ Bε(x0), y tends to x0 under f . Weakly attracting fixed points also
behave similar (though not exactly) to neutral fixed points in complex analysis.

Another pair of useful terms to describe long term behavior are the Ω-limit
set and the A-limit set. The Ω-limit set of x0 is the set of cluster points of
the point’s forward orbit. That is:

Ωlim(x0) =
⋂
n∈N

{fk(x0) | ∀k > n}

This definition allows us to make a few very helpful points. The period of an
orbit starting from x0 can be neatly represented as period(x0) = #Ωlim(x0).
Depending on the long term behavior of x0 under f , the period changes accord-
ingly. If x escapes to ∞, Ωlim(x0) will of course be empty. If x falls into a fixed
point or cycle, then the limit set will consist of the fixed point or each point in
the cycle. If x0 becomes chaotic, then Ωlim(x0) will be an infinite set, probably
having some nonintegral fractal dimension.

The A-limit set, pronounced “capital-alpha”, of a point x0 is conversely the
set of the limit points of all of the backwards iterates of x0 under f . Typically,
points have multiple preimages, so we may think of f−k(x0) as {x ∈ X | fk(x) =
x0}. Thus it’s possible to define the A-limit set as:

Alim(x0) =
⋂
n∈N

⋃
k>n

f−k(x0)

One of the most important terms we will use is the basin of attraction.
This is defined, for a set of points S, as A(S) = {x ∈ X |Ωlim(x) = S}. In
other words, the basin of attraction for a set is the collection of points which
eventually becomes drawn to that set. If S is not the Ω-limit set of any other
set, the basin of attraction of S will be empty. If a cycle is repelling, its basin of
attraction is just the cycle itself. Strange attractors have basins of attraction as
well, and these are often irregularly shaped. One particular term which deserves
special attention is the basin of attraction of infinty, this describes all points
which eventually wind up diverging to infinity,

A(∞) = {x ∈ X | ∀ε > 0, ∃N ∈ N, ∀n > N, ‖fn(x)‖ > ε}.

In Complex Analysis, the compliment of this, X − A(∞), is called the filled-in
Julia set. I’ll refer to this as the filled-in Julia-like set for the nonconformal
case to avoid abusing the term “Julia set”.

One term that will be used very frequently is the Lyapunov exponent.
This is a term that is applied to both the discrete and continuous case, and
represents predictability of the system. For an N dimensional system, the Lya-
punov exponent is a vector with dimension N . Like the eigenvalues of a matrix,
it is often useful to arrange the Lyapunov exponent in order of descending value,
ν1 ≥ ν2 ≥ · · · ≥ νN . The exponent will always be sorted in this way in this
paper. When ν1 is positive, then nearby points in phase space tend to separate
under the mapping f . Since chaos is when nearby points will separate over time
in a bounded system, chaos is synonymous with that system having a positive
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Lyapunov exponent. If ν1 is negative, then points will typically converge to an
attracting cycle of some kind. ν1 is the most important part of the exponent,
and when we refer to the Lyapunov exponent of an orbit as just a single num-
ber, this is always ν1. The spectrum of Lyapunov exponents has the potential
to describe in detail the dynamics of a system, but this will be elaborated upon
later.

3 Quadratic Systems

At the moment, we do not need to consider the entire breadth of discrete dy-
namical systems, so here we will focus on systems of the form:

f(x)i =
N∑

j=1

N∑
k=1

aijkxjxk +
N∑

j=1

bijxj + ci

Quadratic systems are also nice to study because they tend to just fold the
phase space. Thus we can understand the behavior of the system by examining
the way the function folds the phase space. Certain areas of the phase space
can appear to be kneaded under iterations of the map. This is what occurs with
the logistic map x 7→ 4x(1 − x). Points evenly spaced on the unit interval will
become mixed under the logistic map, as though they were kneaded together.
This phenomenon often occurs with quadratic functions in arbitrary dimensions.

3.1 Result regarding strongly attracting fixed points

Lemma 1 The matrix norm of the derivative of a differentiable function at a
fixed point is less than one if and only if the fixed point is strongly attracting.

This lemma is true regardless of the norm used (and is true for any type of
differentiable function). The claim is that strong attraction at a fixed point x0

implies that ‖f ′(x0) < 1‖.
First suppose f is strongly attracting at x0. Let ε > 0 and C < 1 such that

‖f(x)− f(x0)‖ ≤ C‖x− x0‖ for all x such that ‖x− x0‖ < ε. For any µ > 0,
∃δ ∈ (0, ε) such that:

‖f(x)− f(x0)− f ′(x0)(x− x0)‖ ≤ µ‖x− x0‖

for all x such that ‖x− x0‖ ≤ δ. Thus:

‖f ′(x0)‖ = sup
0<‖x−x0‖≤δ

‖f ′(x0)(x− x0)‖
‖x− x0‖

= sup
0<‖x−x0‖≤δ

‖f(x)− f(x0)‖ − [‖f(x)− f(x0)− f ′(x0)(x− x0)‖]
‖x− x0‖

≤ sup
0<‖x−x0‖≤δ

[
‖f(x)− f(x0)‖

‖x− x0‖
+
‖f(x)− f(x0)− f ′(x0)(x− x0)‖

‖x− x0‖

]
≤ sup

0<‖x−x0‖≤δ

(C + µ)

= C + µ
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And we can choose µ such that C + µ < 1 and establish that ‖f ′(x0)‖ < 1.
Next we show the converse, and assume ‖f ′(x0)‖ < 1. Let µ > 0. Again,

there must exist ε > 0 such that:

‖f(x)− f(x0)− f ′(x0)(x− x0)‖ ≤ µ‖x− x0‖

for all x such that ‖x− x0‖ < ε. Thus:

‖f(x)− f(x0)‖ = ‖f(x)− f(x0)− f ′(x0)(x− x0) + f ′(x0)(x− x0)‖
≤ ‖f(x)− f(x0)− f ′(x0)(x− x0)‖+ ‖f ′(x0)(x− x0)‖
≤ µ‖x− x0‖+ ‖f ′(x0)‖‖x− x0‖
= (µ + ‖f ′(x0)‖)‖x− x0‖

It is possible choose a value of µ such that µ + ‖f ′(x0)‖ < 1, and we find
that f is strongly attracting at x0.

Note that this part of the proof does not specifically require that x0 be a
fixed point. The map will contract at this point regardless, pulling in neighbors
to the image of x0 under f .

Theorem 1 Quadratic systems have at most one strongly attracting fixed point.

This may come as a surprise since there are functions of this form which have
multiple fixed points, the eigenvalues of whose derivatives are less than one.
Recall that if p is a strongly attracting fixed point under f , then ‖f ′(p)‖ < 1.
Thus what remains to be shown is that there is at most one fixed point such
that the norm of its derivative is less than one. If f is a polynomial of degree 2,
then its derivative will be an affine linear operator. So we note that x 7→ f ′(x)
is an affine linear operator, and the set of points B ⊂ X, where B = {x ∈
X | ‖f ′(x)‖ < 1} is a convex set. The proof is as follows:

Let B = {x ∈ X | ‖f ′(x)‖ < 1}.

∀x ∈ X, ∃Mx ∈ X× X, b ∈ X, such that: f ′(x)y = Mxy + b

Also; Mx is linear in x, since f is quadratic. Let s, t ∈ B and set u = (1 −
α)s + αt. Thus if ‖y‖ = 1,

‖f ′(u)y‖ = ‖Muy + b‖ = ‖M[(1−α)s+αt]y + b‖
= ‖(M(1−α)s + Mαt)y + b‖
= ‖(1− α)(Msy + b) + α(Mty + b)‖
≤ (1− α)‖f ′(s)y‖+ α‖f ′(t)y‖ ≤ (1− α)‖f ′(s)‖+ α‖f ′(t)‖
< (1− α) · 1 + α · 1 = 1

Thus we can see that ‖f ′(u)y‖ < 1, so u ∈ B.
Suppose now there are two strongly attracting fixed points, p and q. Thus

‖f ′(p)‖ < 1 and ‖f ′(q)‖ < 1, and so both p and q are in B. Because B is
convex, the segment pq ⊂ B. Because of Lemma 1, we know that for each
x ∈ pq, there exists δx > 0, Cx < 1 such that ‖f(y)− f(x)‖ ≤ Cx‖y − x‖ for
all y such that ‖y − x‖ < δx. Because {Bδx

(x) |x ∈ pq} is an open cover of
the compact set pq, we can find a finite sub-cover.
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Let x(α) = (1 − α)p + αq. Then we obtain 0 = α0 < αa < · · · < αN = 1,
xj = x(αj) and balls Bj , 0 ≤ j ≤ N , Bj = Bδxj

(xj), with Bj ∩Bj+1 6= ∅ for all
0 ≤ j < N , which defines our finite open cover. Now select zj ∈ Bj ∩Bj+1 ∩pq
for 0 ≤ j < N with ‖xj − zj‖+ ‖zj − xj+1‖ = ‖xj − xj+1‖. Then:

‖f(p)− f(q)‖ ≤ ‖f(x0)− f(z0)‖+ ‖f(z0)− f(x1)‖+ ‖f(x1)− f(z1)‖+
‖f(z1)− f(x2)‖+ ‖f(x2)− f(z2)‖+ ‖f(z2)− f(x3)‖+
· · ·+ ‖f(xN−1 − f(zN−1)‖+ ‖f(zN−1)− f(xN )‖

≤ Cx0‖x0 − z0‖+ Cx1‖z0 − x1‖+ Cx1‖x1 − z1‖+
Cx2‖z1 − x2‖+ Cx2‖x2 − z2‖+ Cx3‖z2 − x3‖+
· · ·+ CxN−1‖xN−1 − zN−1‖+ CxN

‖zN−1 − xN‖
≤ [ max

0≤j≤N
Cxj ](‖x0 − z0‖+ ‖z0 − x1‖+ ‖x1 − z1‖+

‖z1 − x2‖+ · · ·+ ‖xN−1 − zN−1‖+ ‖zN−1 − xN‖)
≤ [ max

0≤j≤N
Cxj ]‖p− q‖

< ‖p− q‖, only ifp 6= q.

Therefore, d(f(p), f(q)) < d(p, q), but since p and q are fixed points, they
must be the same attracting fixed point. This completes the proof.

3.2 Conjecture regarding attracting cycles

Conjecture 1 Quadratic systems may have at most one strongly attracting cy-
cle.

Given Theorem 1, it also seems reasonable to suppose that there may be
only one strongly attracting cycle, but this is much harder to show. A strongly
attracting cycle of period p is an ordinary cycle for which the derivative of fp

is less than one at the points in the cycle. There may, however, be multiple
weakly attracting fixed points, as evidenced on page 15. Over the course of my
investigation, I was unable to derive a proof either for or against this claim, even
in spite of some suggestive numerical evidence, which shall be presented in the
next section. The crux of the problem is that because the function is iterated,
the nth derivative ceases to be affine. For an n-cycle to be strongly attracting,
each fn must have each xj as an attracting fixed point, in other words, the
following must hold:

∀j ∈ 1..n, ‖(fn)′(xj)‖ < 1

It would be enough to show there can not be more than two strongly
attracting cycles of the same period n, by taking the lowest common multi-
ple. Due to the laws of matrix multiplication, it is not possible to claim that∏n

j=1 ‖f ′(xj)‖ < 1, in which case there would be one point the norm of whose
derivative is less than one, which would be instrumental in building a proof.
This problem becomes difficult because of the loss of commutativity in matrix
multiplication. However, it also means that if a proof could be established, it
would be a very strong result.
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In one dimension this is not a concern, and the conjecture does hold. By
results in complex analysis [2], we know that in Ĉ (C extended to include ∞),
there are at most two attracting cycles for a rational function of degree 2. This
includes the point ∞, which is also attracting under any polynomial of degree
d ≥ 2. Since R ⊂ Ĉ, we have that there can only be one attracting cycle that
is not infinite, therefore our conjecture holds for one dimension. Matrix multi-
plication makes things egregiously complicated, and I have thus been unable to
find a result one way or another.

3.3 Results of numerical experiments

I developed a program to test for strongly attracting cycles using random points
in parameter space, specifically in the two dimensional case, which is starting
point to analyze n-dimensional space. The program tests for some stable cycle
and determines whether the cycle is strongly attracting. If so, the program
proceeds to attempt to locate other attracting cycles. The program also discards
orbits that are measured to have a positive Lyapunov exponent. In an earlier
investigation, I did not reject these, and had on my hands a number of false
positives (only about 1 in 100000 tests) which appeared to have multiple strongly
attracting cycles, but in reality they were orbits that would converge to one cycle
very slowly. Alternately there might be a weakly attracting cycle that simply
appeared to be strongly attracting due to numerical error, or an orbit may
have a lyapunov exponent that measures positive (implying instability), but the
orbit seems to the program to be converging to a cycle. It remains to be proven
formally whether it is possible for an attracting cycle and a chaotic orbit can
coexist in a quadratic function.

One possible reason for the false positives is that the parameters were chosen
in between two configurations with different attracting cycles, and this forms a
chaotic region in parameter space between them. Generally these systems will
wind up always falling into one orbit or into chaos.

Overall, the program was not able to find simultaneous strongly attracting
cycles. Though, due to the somewhat buggy nature of the program and results,
this cannot be counted as conclusive evidence of the conjecture. It does seem
unlikely that there would be two strongly attracting cycles unless chaos were
present. On the other hand, if there were chaos present, it would seem unlikely
that there could be two cycles that are attracting. There were situations in which
there sometimes seemed to be strongly attracting cycles (usually fixed points)
and also chaos. This is a situation that definitely warrants further investigation,
specifically of the following questions. If chaos is present in a quadratic system,
can cycles actually be attracting? What are the properties of any systems which
have multiple (at least) weakly attracting cycles, and chaos is present?

Despite these concerns, the results of the program support the claim that
there may only be one strongly attracting cycle. The following is output from
the program after being run on one million points randomly chosen in parameter
space.

11



Total Tests: 1000000
Stable Structures: 47937
Chaotic structures: 33279
Nonattracting periodic: 12890
Valid periodic: 1768
Two Structures: 29
Period and Chaos: 13
Period and Period: 16

The program chooses points in the parameter space for the mapping:

xn+1 = a1x
2
n + a2xnyn + a3y

2
n + a4xn + a5yn + a6

yn+1 = b1x
2
n + b2xnyn + b3y

2
n + b4xn + b5yn + b6

Each value aj and bk is chosen randomly between −2 and 2. Then 100 random
initial points (x, y) are chosen in [−2, 2]×[−2, 2]. If there is a pair which does not
escape to infinity, and its orbit is not chaotic, then it must be in a cycle. If that
cycle is strongly attracting, the program attempts to locate another strongly
attracting cycle which differs than the original one. It tests for these 20 times,
each time it chooses 100 random initial points to find one that does not go to
infinity, is not chaotic, and is separate from the original cycle.

The source code for the program which generated this data can be found in
Appendix A.2.

3.4 Parameter Space

Much of the research that has been done on strange attractors and dynamics in
general has had a fairly heavy-handed focus on dynamics from the point of view
of the phase space. Examining parameter space can yield general information
on what sorts of dynamics can possibly arise for any point chosen in a system
under a specific set of parameters.

3.5 Specific case of the Hénon attractor

The Hénon map is a very simple system in two dimensions with two parameters.
It nontheless holds a very rich parameter space, containing many interesting
varieties of dynamical phenomena. The formula I shall use for the Hénon map
is as follows:

xn+1 = a− x2
n + byn

yn+1 = xn

It is classically regarded as one of the simplest strange attractors. This is
largely because it has a constant Jacobian: −b. The Jacobian is calculated as
the determinant of the derivative of the map. Since it is fixed, we know that the
map is always invertible for b 6= 0. The Hénon attractor is frequently recognized
as having a kneaded parabolic shape (for a = 1.4 and b = .3), though that
is only for one possible configuration of parameters. There is a wide range of
possible behavior that the map can exhibit, which includes cycles of all periods,
as well as a large variety of chaotic behaviors.
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Figure 5: The full Henon parameter map.

3.6 Parameter maps and what different areas mean

Comprehensively describing parameter space is inherently very tricky. Infor-
mation represented in parameter space must allow an observer to make claims
about structure and behavior in the phase space. However, it is not easy to
test for all the different types of structures in the phase space. Randomly cho-
sen points may fall into the orbits of different attractors, or sometimes there
may be a stable orbit which is hard to observe, because its basin of attraction
is very small and everything around it diverges to infinity. For the quadratic
polynomial in the complex plane, z 7→ z2 + c, the system dynamics hinge on
the forward iterates of 0, which is a critical point. This is not the case for the
Hénon map and for other systems. I have attempted to resolve this problem by
sampling several randomly chosen points in the phase space for each point in
parameter space.

Here is the Hénon parameter map in all its complexity. What each portion
of it means and represents shall be explained shortly:
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Figure 6: The param-
eter map using initial
point (0, 0).
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Figure 7: The param-
eter map using initial
point (−0.1, 0).

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

b

a

Figure 8: The differ-
ence between the two.

Around the region nearby (a, b) = (1.5,−0.5) in the parameter space, the
attracting structures were so far away from the origin that my initial programs
would reveal this area as a strange self-similar structure in which every point
inside would go to infinity. In plotting the Julia-like sets it became apparent
that this was not the case, but rather the bulk of the filled-in Julia-like set
was far away from the origin. To illustrate the difference this makes, below
are two images of the parameter map with only one chosen initial point, and
beside those are the differences in the images (Figures 6-8). The light colored
regions are the areas where the two are different. The self similar structures
vary considerably with the change in the initial point, and don’t seem to be
tremendously indicative of any real dynamics taking place there. A good analogy
to this is plotting the Mandelbrot set by only examining the forward orbits of
the point 0.1 + 0.1i, instead of 0. Some sections of the Mandelbrot set would
simply disappear! When a larger sample space is considered, (my program tests
random points near both (0, 0) and (0,−1)) the parameter space appears to be
much cleaner.

In order to express the most information about the two dimensional param-
eter space via these images, color is used to represent a variety of things. Black
suggests that the area is unstable and goes to infinity. Specifically, it means a
random sampling of points all escaped to infinity. Earlier in my investigation, it
became clear that the seemingly unstable areas discussed above were the result
of the Julia-like set moving away from the origin, gray colors were used in the
parameter maps to indicate that some randomly chosen initial points would stay
bounded while others would not. Now I do not use the gray colors, but instead
display the color normally if there is at least one bounded orbit.

White and light green colors indicate that there are periodic orbits with
negative Lyapunov exponents. In these areas, sampled points would fall into
some kind of strongly attracting cycle. A purer green indicates a longer cycle.
It is difficult to tell the difference between areas where the difference between
the length of the cycles is small, so there are some images below to help clarify
where areas have only one cycle with periods one through eight.

Dark green and red indicate that there exist multiple at-least weakly attract-
ing cycles. This green is much darker than in the cyclic regions described above,
so there won’t be any mistaking one for the other. These are colored according
to the Lyapunov exponent. When the area is more red, the exponent is more
positive, and points chosen in that area behave in a more chaotic fashion.
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Figure 9: Period 1 Figure 10: Period 2 Figure 11: Period 3

Figure 12: Period 4 Figure 13: Period 5 Figure 14: Period 6

Figure 15: Period 7 Figure 16: Period 8 Figure 17: Composi-
tion of the above
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Figure 18: Hénon Lyapunov map

Bright red and purple represent chaotic regions which have no attracting
cycles. These are again colored according to the Lyapunov exponent. The
brighter the red, the more positive the Lyapunov exponent, and more chaotic
the region. Figure 18 is a map which plots just the value of the Lyapunov
exponent across the parameter space. Notice that in the areas where there are
attracting cycles, the map is much more blue, indicating a negative exponent.
One can see that the lower area of the map (around where b = −1) has much
more red in it, and may have exponents which are positive. The area to the
right has exponents which are definitely positive, as this is where the classic
Hénon attractor is from.

3.7 Geography of the Hénon parameter map

There is a rich variety of behavior and peculiar features in the Hénon parameter
map. Let us first make a few general observations before examining individual
regions of parameter space in detail. All bounded structures in the parameter
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space occur for −1 ≤ b ≤ 1. The entire region in parameter space appears to
be bounded on the left by some curve, and partialy bounded on the right by a
parabola. I say partially, because there are some pockets of bounded behavior
that show up behind the parabola. Most of the parameter space corresponds to
maps which are stable; they have strongly attracting structures. Towards the
extremities, and also partially under the parabola, the map seems to have a fair
bit of chaotic behavior, but these regions seem to be interspersed with stable
bubbles or pockets. Towards some of the edges of the map, and also in the
area near (1.5,−0.5), the bounded structures in the phase space become thin
or move far from the origin, and this causes the nearby areas to take a fuzzy
appearance, as a consequence of the random sampling.

Despite this apparent fuzziness in the rendering of the Hénon map, the
entire structure does appear to be closed and necessarily compact. The set of
parameters that yield bounded structures does not appear to have direct fractal
characteristics, but there are small details in the chaotic regions which seem to
have a self-similar appearance.

The filled-in Julia-like sets are all plotted for (x, y) ∈ [−5, 5]× [−5, 5], unless
explicitly marked as a magnification. These sets have a few common factors.
They all appear to be bounded by parabolas, and sometimes the set can seem
to extend out quite far. Some of these sets may extend towards infinity, though
I have not tested for this explicitly. One general feature to note is that above
the line b = 0, the bounding parabolas tend to open upward, and below the line,
the parabolas tend to open downward, this may be attributed to the changing
sign of the Jacobian.

In the phase space maps, each point in an image is colored according to the
value of the measured Lyapunov exponent and where the point eventually winds
up after about 5000 iterations. This coloring scheme did not actually become
very useful for providing information about the maps, but it does aid partially
in differentiating cycles and the different components of the phase space. In
areas where the differences are hard to distinguish, I have sometimes enhanced
the images, but it is always indicated when I am doing this.

3.7.1 The looping features at the bottom

Looking carefully here, it is possible to see a peculiar branching structure that
is not unlike a bifurcation diagram. Towards the bottom of the map, we see
that the branching grows thick enough that it becomes interpreted as chaos.
As a matter of fact, at the very bottom, on the line b = −1, this does become
chaotic. The Lyapunov exponents do become greater here, though they stay
negative in the areas where there are attracting cycles. If one examines the
colors carefully, the periods of the “bubbles” increase as b approaches −1. In
between these bubbles, there is what would appear to be simultaneous seperate
cyclic structures. There is, however, a great deal of granularity here, as in
the self-similar black region. It would seem as though this granularity would
become explained through examination of the Julia-like sets, but I was not able
to observe any real correlation between the grain patterns and the shape of
either the attractors or the Julia-like sets. It may also be an artifact of the
sampling method, but I was not able to test for this, either. Many of these sets
appear as though there is both an (at least) weakly attracting fixed point and
a periodic cycle.
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Figure 19:

Figure 20:
(0.85,−0.75)

Figure 21:
(0.85,−0.99)

Figure 22:
(0.85,−1.0)

Figure 23:
(0.85,−1.0) orbit

Let us examine a few examples in which b becomes close to −1.
The images (Figures 20-23) appear to contain a single basin which constricts

as b nears −1. However, where b = −1, it is possible to see a ring of 10 small
isolated dots around the main structure. It would seem to be likely that these
are the basin of a 10 periodic cycle, since the attractor which lies in the center
region does not extend into that area. It also suggests that this 10-cycle exists
for greater values of b, but may simply be more difficult to see.

In the orbit image, it is possible to see the orbit of the attractor of the
central region, though the images have been touched up slightly to make this
more visible. It is very interesting to note how the attractor spontaneously
becomes a very clear loop. On this loop, the Hénon map is likely to behave akin
to an angle doubling map on the unit circle.

It is possible to see in Figures 28-31 that there is a 3-cycle in addition to
the central fixed point. However, at b = −1, this 3-cycle seems to vanish. It is
evident in the parameter map that the bubbles which feature attracting cycles
have borders which cross vertical paths as a is fixed. So it should seem perfectly
reasonable that a basin of an n-cycle can disappear and a basin of an m-cycle
can begin. Compare this with Figures 24-27, in which the three cycle and central
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Figure 24:
(1.1,−0.75)

Figure 25:
(1.1,−0.8)

Figure 26:
(1.1,−0.9)

Figure 27:
(1.1,−1.0)

Figure 28:
(1.0,−0.75)

Figure 29:
(1.0,−0.9)

Figure 30:
(1.0,−1.0)

Figure 31:
(1.0,−1.0) orbit

point separate as b approaches −1.
However, since chaos becomes present at b = −1, and some of the bubbles

appear to extend all the way towards that line, it would seem likely that some of
the Julia-like sets on b = −1 will feature multiple chaotic structures. If we push
a out a little further, this can be seen to be the case in Figures 32-35. Upon
very close investigation, it does appear as though the orbits are somewhat thick,
and they may not just be a loop, but have some more elaborate behavior.

There are also other areas which seem to exhibit chaotic behavior in this
region even without being at b = −1. For example, consider the following
images (Figures 36-38) which are at a = 0.2. When b = −0.8, the map appears
to be fairly straightforward. However, when b = −0.9, some peculiar structures
appear on the inside of the Julia-like set’s edges. In the enhanced image, where
the contrast is increased to highlight the difference, it is clear that there is a
great deal of variation in the color in the regions in the edges, which indicates
that the points do not converge to a single cycle. I was unable to plot an orbit
in this area, though it would appear to be a chaotic region with 4 components.
Unfortunately, this appears to be located in an evidently stable region in the
parameter space, so it is unclear what precisely this means.

Figure 32:
(1.04,−1.0)

Figure 33:
(1.04,−1.0) orbit
1

Figure 34:
(1.04,−1.0) orbit
2

Figure 35:
(1.04,−1.0)
zoomed overlay
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Figure 36:
(0.2,−0.8)

Figure 37:
(0.2,−0.9)

Figure 38:
(0.2,−0.9) en-
hanced

Figure 39:
(2.0,−1.0)

Figure 40:
(2.6,−1.0)

Figure 41:
(3.2,−1.0)

Figure 42:
(3.5,−1.0)

One characteristic of this area remains especially puzzling, and that is the
strange criss-crossing grain patterns in the areas with multiple cycles. This
pattern is also reflected in the values of the Lyapunov exponents, so if this
pattern is not actually a part of the Hénon map, it must be due to the way
cycles are evaluated. I was not able to investigate thoroughly what transitions
occured as the parameters move across these regions.

3.7.2 The remainder of the panhandle at the bottom

The entire region near b = −1 in parameter space continues rather far to the
right. I have not determined precisely what the value of α is such that for a > α
there are no bounded structures. It would seem clear that such a boundary
exists, however it is very difficult to measure because the Julia-like sets become
very thin as a increases. To see what kind of difference this makes, consider
Figures 39-42.

Towards that extreme end, around where a = 3.5, the Julia-like sets become
very thin and are fairly hard to measure. The dynamics they exhibit seem to also
completely branch in two, so instead of having a cyclic structure around a fixed
structure, the fixed structure disappears completely. This is perhaps a result of
the fixed point changing from at-least weakly attracting to nonattracting.

Figures 43-46 show a transition decreasing b where a = 3.5. In (3.5,−0.84),
there appears to be a 6-cycle, which is indicated via the arrows. It is intrigu-
ing that despite the Julia-like set losing many recognizeable features when a
increases, it nonetheless maintains a complex structure.

3.7.3 The looping features at the top

Similar to the area in the bottom of the parameter space, this area also contains
higher order cycles and chaotic areas that lie between them. The layout of the
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Figure 43:
(3.5,−0.85)

Figure 44:
(3.5,−0.84)

Figure 45:
(3.5,−0.9)

Figure 46:
(3.5,−0.99)
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Figure 47: Zoom of the top of the Hénon parameter
map
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Figure 48:
(0.2, 0.85)

Figure 49:
(0.2, 0.90)

Figure 50:
(0.2, 0.99)

Figure 51:
(0.2, 1.0)

Figure 52:
(0.3, 0.999)

Figure 53:
(0.3, 0.999) en-
hanced

periodic bubbles is slightly different, but they still appear to divide as they
reach the edge of the parameter space, this time near b = 1. This region is
much tighter than along b = −1. The edge of parameter space touching b = 1
begins at a = 0 and appears to end around a = 1.25. Compare this with the
edge near b = −1, which contains the same type of branching structure and is
likely to express dynamics which are just as diverse. The Julia-like sets in this
region also exhibit a very interesting feature different from those near b = −1;
they all appear to have two parts. The bounded structures in the Julia-like sets
appear to have reflections across a quadratic curve. The periods of the stable
cycles are multiples of two and the chaotic structures also get reflected between
two separate components (Figures 48-51).

When b was near −1, there was a trend for there to be a single fixed point,
around which a cycle would orbit. This trend also seems to continue here, but
instead of the cycle orbiting around a fixed point, it orbits around a 2-cycle. For
example, in Figures 52 and 53, the first image appears to be a simple reflecting
two cycle. However, it also happens to have a 12-cycle spinning around it, as
shown in the enhanced version next to it. I would attribute this duality to the
fact that when b > 0, the Jacobian for the Hénon map is negative, and thus
creates flip-flopping behavior. If this is indeed the case, then it is unlikely that
we will find areas whose foci are three cycles are more.

We can observe this trend continue in the sets where b = 1 (Figures 54-57).

3.7.4 The bright chaotic region in the upper right, and the pockets
of stability within

This is where the typical folded Hénon map (1.4, 0.3) comes from. However,
that is by far not the most interesting coordinate in the parameter space in
this portion of the map. Some very peculiar parts of the parameter space
manifest themselves here, where stable pockets reach out beyond the unstable
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Figure 54:
(0.3, 1.0)

Figure 55:
(0.5, 1.0)

Figure 56:
(0.6, 1.0)

Figure 57:
(1.0, 1.0)
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Figure 59:
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Figure 60:
(1.5, 0.01)

Figure 61:
(1.5, 0.02)

Figure 62:
(1.5, 0.03)

Figure 63:
(1.5, 0.04)

Figure 64:
(1.5, 0.05)

Figure 65:
(1.5, 0.06)

Figure 66:
(1.5, 0.10)

black border, sometimes curving around and returning. These small pockets of
stability also are preserved in the chaotic region.

Investigating closely, threads of stability appear to be interspersed amidst
the chaos, and it is likely that they are in fact dense. These threads also cross
each other, and occasionally merge together in small clusters. It is difficult to
observe what precisely occurs when the stable threads overlap each other, but
it seems that if a thread of period m overlaps a thread of period n then either
both periods will coexist, or there will be a pocket where the period is mn. Due
to the very fine nature of these structures, I was not able to test this explicitly.

This particular space is rich in patterns; consider Figures 60-66 where a
is fixed at 1.5 and b is varied between 0 and 0.1. Initially the attractor is
in two separate parts which move closer together, and these separate parts
can be observed quite clearly in the phase space. When they meet, the two
regions of the Julia-like set in the phase space merge into one and become
indistinguishable.

The last image, at (1.5, 0.1), features a periodic cycle. When the parameters
are varied, the period and the points change, but they stay on the same general
curve, as we can see in Figures 67-70.

Figure 67:
(1.5,−0.1)

Figure 68:
(1.5,−0.2)

Figure 69:
(1.5,−0.3)

Figure 70:
(1.5,−0.5)
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Figure 71:
(1.28, 0.58)

Figure 72:
(1.08, 0.52)

Figure 73:
(1.02, 0.48)

Figure 74:
(1.4, 0.3)

Figure 75:
(1.47, 0.252)

Figure 76:
(1.474, 0.258)

Many other peculiar features occur within the bubbles in the parameter
space. When the periodic areas jut out into the divergent area, the Julia-like
sets become very narrow and hard to detect. The following images contain
cycles with very tiny basins of attraction. The actual points in the cycles are
highlighted. Their narrowness raises the question of how far these stable threads
extend out into the unstable region of parameter space until they disappear
entirely (Figures 71-73).

It is possible to see some periodic behavior near the classic Hénon map.
Figure 74 contains the classic Hénon map and Figures 75 and 76 contain slight
perturbations in which the chaotic attractor degenerates into a cycle.

3.7.5 The line b = 0

In this, the simplest of cases, The two dimensional map becomes the map xn+1 =
1 − ax2

n. However, this map is also conjugate to xn+1 = −a + x2
n. This is a

very familiar map when the variables are complex. In our map we are only
considering the real coordinate, but superimposing the Mandelbrot set on the
Hénon parameter space yields a surprising discovery (Figure 77).

This is not a new observation, as the Henon map has been examined in the
complex plane with a fair amount of detail [28]. Nonetheless, it is intriguing to
see the interaction between the two dissimilar mathematical structures.

Here, we see why much of the region underneath the purple quadratic arch
is necessarily of period 1, and why a lot of the region above it is of period
two. Looking carefully, it is possible to see purple lines that intersect where
the bulbs of the Mandelbrot set separate on the axis. Additionally, the spaces
where there are “mini” Mandelbrot sets overlay regions which have periodic
behavior. Since we know that the Mandelbrot set is connected, and thus the
mini-Mandelbrots are as well, it appears to be the case that there are infinitely
many stable periodic strips throughout the chaotic region.
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Figure 77: Superimposition of the Mandelbrot set.

26



3.8 Fractal behavior in parameter space

Some of the patterns in the Hénon parameter map clearly have self similar struc-
ture, but is it possible to show that this is actually a fractal? This question is
complicated, because the boundary of the stable region of the parameter space
is hard to plot out numerically, although many of the boundaries do seem to
be smooth. There do appear to be unmistakably self similar features sprinkled
throughout the parameter space. Much like there are lobes on the Mandelbrot
set which describe parameterizations that contain periodic components of cer-
tain degrees. There are also recognizable regions which dictate the period and
structure of the orbits under those parameters, as well as the shape and behavior
of the Julia-like sets as well.

These sets of parameters do not appear to have fractal dimension themselves,
but their borders may, and the pockets of stability in the chaotic region of the
Hénon parameter map appear to be procedurally “generated” somehow, such
as through a nonlinear iterated function system.

4 Lessons Learned from Complex Analysis

Most of the knowledge we have regarding fractals originates from studying con-
formal maps iterated on the complex plane. The conformality of complex map-
pings makes the analysis of dynamics very straightforward. Despite the fact that
C has two dimensions, it behaves in a one dimensional manner under conformal
mappings; as a result, dynamics in C will be very different than the dynamics
in R2. Nonetheless, there are several important concepts from complex analysis
that would be beneficial to address here in order for us to draw a few analogies
between the two types of systems.

4.1 Types of fixed points and their behavior

The dynamics of a system f ∈ C → C depend very heavily on the properties of
the fixed points. From these we can get a good understanding of the coordinate
systems under f(C). A fixed point z0 falls into one of three categories depen-
dent its derivative f ′(z0). The fixed point is attracting, neutral, or repelling if
the norm of the derivative is less than one, equal to one, or greater than one
respectively.

For rational functions of degree d, the number of critical points (points at
which f ′(x) = 0) is bounded by 2d − 2. The number of attracting cycles on Ĉ
is bounded by the number of critical points. Through further analysis, it is also
possible to place bounds on the number of neutral fixed points, and there is a
bound of 6d− 6 on the number of attracting and neutral fixed points [2].

Additionally, cycles may be classified in a manner similar to fixed points.
For ease of notation, let us represent iterates of functions with superscripts, so
that f(f(z)) = f2(z), and f ◦fn = fn+1. The derivative of a cycle z1, z2, . . . , zp

of period p, is (fp)′(z) taken at any of the points on the cycle. Using the chain
rule, we have a handy formula:
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(fp)′(z1) = (fp−1 ◦ f)′(z1)
= (fp−1)′(f(z1))f ′(z1)

= (fp−1)′(z2)f ′(z1) =
p∏

k=1

f ′(zk)

Cycles may also be described as attracting, repelling, or neutral, depending
on the norm of the derivative. Also note that the above rule is applicable to any
dynamical system in which the chain rule holds, not only for conformal systems.

4.2 Mandelbrot and Julia sets

Under a rational map, the complex plane is divided into two parts. There is the
Fatou set on which the eventual behavior of points under the map is predictable.
This set consists of attracting fixed points and cycles, as well as their basins, as
well as points which diverge to infinity. In complex analysis, infinity may simply
be regarded as a single point in the Riemann Sphere, and for, polynomials, an
unbounded sequence may be thought of as just approaching the fixed point of
infinity. There is the Julia set, which contains the repelling cycles and all the
points that are unpredictable or chaotic.

Julia sets are the borders of the basins of attraction in complex dynamical
systems. The filled-in Julia set is the compliment of the basin of attraction
of infinity. For a polynomial, the Julia set may be either connected or totally
disconnected. Most of the time, we will only be concerned with the map z2 + c,
and the connectivity of the Julia set depends on the behavior of the iterates of
the function at the point 0. If the iterates are bounded, then the Julia set is
connected, otherwise it is totally disconnected. The Mandelbrot set M is the
set of all c such that Jc is connected. As such, the M-set is essentially a map
of the parameter space for all possible Julia sets for a given parameterizable
function, and is commonly referred to as the connectivity locus for this reason.

The function with the most studied Julia sets is the classical quadratic func-
tion z2+c. Of crucial importance in the study of the Julia sets of this polynomial
is the forward orbit of the critical point 0. This orbit and its limit set, if it has
one, describes in general the overall structure of the Julia set. For c ∈ M, the
limit set of the orbit of 0 is the attracting cycle for all points in the interior of
the filled in Julia set. When c is chosen in any of the bulbs of the Mandelbrot
set, the orbit of 0 tends to an attracting cycle whose period is determined by
the combinatorial arrangement of the bulb’s placement in the M-set.

4.3 External Rays and Symbolic Dynamics

The strange combinatorial structure of the Mandelbrot and Julia sets may be
described through symbolic dynamics as illustrated by Keller and Olivia in
[13, 14, 26]. Symbolic dynamics hinges on the interpretation of equivalences
and conjugations in dynamical systems.

These symbolic techniques can be used to lay out the similarities and equiv-
alences in the dynamics of the Julia sets for every value of c. The systems of
equivalences in dynamics are called invariant factors. When there exist conjuga-
tions between dynamical systems, the systems may be thought of as equivalent.
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It is possible to separate all the dynamical systems that arise from the functions
fc into equivalence classes based on these conjugations. This type of analysis
works particularly well in the conformal case of complex dynamics, but it also is
relevant in the non conformal case, when we are trying to distinguish between
different systems.

External rays are a helpful combinatorial tool in analyzing Julia sets. The
following is paraphrased from Olivia [26], who provides a very straightforward
explanation of external rays. When a Julia set is connected, its topology may
be projected onto a circle. We may describe a bijection φc ∈ C − J → C −∆,
which conjugates the dynamics of fc outside the filled in Julia set Kc to the
behavior of z 7→ z2 outside of the unit disk. This conjugation should actually
be fairly intuitive, as in both dynamical systems, all points chosen will iter-
ate towards infinity. The notion of external rays comes from taking the rays
originating from the unit disk to infinity and examining their projections under
φ−1. For example, a ray with angle θ lands at zθ if zθ = limr→1 φ−1(reiθ). The
landing lemma of Douaday and Hubbard states that rays with rational angles
always land. When the extension of φ−1 is continuous on the unit circle, the
landing map θ 7→ φ−1(e2πiθ) forms a semi-conjugacy from the angle doubling
map on the unit circle to fc on Jc. The unit circle and the doubling map is also
semi-conjugate to right-infinite binary sequences and the left shift map. The
conjugation to this system provides a combinatorial model of Jc as a quotient
of the space of binary sequences.

We have seen this sort of angle doubling behavior before in the Hénon phase
maps, where the limits of the attractors at b = −1 formed loops. It is imaginable
that the analysis of external rays could be applied quite neatly to those maps,
since the Julia-like sets were connected and had only one component. The
analysis of external rays falls apart in some other situations where the basins
of attraction for the system form several disconnected components. This occurs
because there is no natural mapping φ ∈ X − J → X − ∆, which is obviously
invertible. It would be conceivable to form some kind of analogue, though, and
such analysis may prove to be fruitful.

4.4 Continuity of Julia sets under variation of parameters

Under certain conditions, it is a significant question whether the map c 7→ Jc is
continuous under the Hausdorff metric. This problem was first posed by Douady
[27], and affirmed for the polynomial case. Several details of this continuity is
discussed by Kriete in [16, 17, 18], who illustrates instances of the Julia set for
a sequence of functions converging or not. It remains to be seen whether claims
may be made for continuity under parameterizations, particularly for the case
when the function is differentiable with respect to its parameter.

Suppose a sequence of functions {fd}d∈N converges uniformly on compact
sets to a function f . Also suppose that these functions are meromorphic on
C, that is, f(z) = g(z)/h(z), where g and h are entire and h is nowhere zero.
Then, it is possible to show that the Julia sets J(fd) converge to J(f) in the
Hausdorff metric, if the Fatou set F (f) is the union of the basins of attracting
periodic orbits and ∞ ∈ J(f). The following is a sketch of the proof given in
[17]:

Using the chordal metric in the Riemann sphere, Ĉ, recall that the Hausdorff
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distance, h(A,B), is defined as:

h(A,B) = inf{ε > 0 |A ⊂ Vε(B), and B ⊂ Vε(A)}

Where Vε(X) is the ε-neighborhood of X ⊂ Ĉ.
First, let O(z0) be the orbit of an attracting or repelling cycle of period k in

f . For some N ∈ N, fd has a respectively attracting or repelling k-periodic orbit
O(zd) for all d > N . Additionally, O(zd) converges to O(z0) in the Hausdorff
metric. Also, if A(z0) is the basin of O(z0), for every compact K ⊂ A(z0), there
is an N ∈ N, such that K ⊂ O(zd) for all d > N . It has been shown in Hirsh and
Smale [29] that a k-periodic orbit (and its basin if it is attracting) will persist
under small C1 perturbations of the function.

To show the Hausdorff convergence of Julia sets, we note that since ∞ ∈
J(f), the Fatou F (f) set consists of the basins of attracting periodic orbits
O(zi) ⊂ C. Let ε > 0, and define F ε(f) as Ĉ − Vε(J(f)). This is compact in
Ĉ and it must intersect only finitely many A(zi). Therefore there must exist
N ∈ N such that F ε(f) ⊂ F (fd) for all d > N . Additionally, J(fd) ⊂ Vε(J(f)).
To see that for large enough d, let w ∈ J(f). Since repelling periodic points
are dense in J(g), let z0 ∈ Vε(w), as a repelling periodic point of f with period
k. Then we know that there is another k-periodic orbit for fd, O(zd) which
converges to O(z0). Since O(zd) lies in J(fd), the arbitrarily chosen point w
lies in Vε(J(fd)). And this is enough to show the other side of the Hausdorff
convergence, since J(f) is compact.

Of course, there are important situations that do not satisfy each of these
conditions. Specifically, the condition where ∞ ∈ J(f) is significant and easy to
overlook. Kriete explores situations when the continuity in question is analyzed
by taking the limit of arbitrary sequences of Julia sets. If we take the sequence
of functions fd, which are governed by a sequence of parameters cd, where f
is differentiable with respect to c; it is conceivable that there may be some
regions in the parameter space where the Julia set is continuous. After all, both
attracting and repelling cycles are preserved under small perturbations of the
function.

We have seen the kinds of changes that occur in the Hénon Julia-like sets
when parameters are perturbed only slightly. Even though the period sometimes
changes, the shape of the filled-in Julia-like set tends to be mostly preserved, and
when the parameters are varied away from the divergent regions, the filled-in
Julia-like sets appear to be continuous with respect to the parameters. Kriete
proves that filled-in Julia sets are continuous with respect to the Hausdorff
metric [18], so it is not too far of a stretch to suppose that filled-in Julia-like
sets are continuous for certain conditions as their parameters are varied.

5 Application to Differential Equations

Dynamics in differential equations tend to be more commonly studied than
in discrete systems, but there are a number of dynamical properties that are
shared by both systems. It is good to address some of these properties in the
continuous case for the purpose of making analogies. Continuous systems tend
to be better behaved than discrete systems because they may not wildly skip
across the phase space, like discrete systems are prone to doing. In fact, if the
continuous system is planar, then chaotic behavior cannot even occur.

30



5.1 Stability under perturbation of initial point

Let us consider an ordinary differential equation (ODE) of the form:

ẋ = f(t, x)

Where f ∈ C1(R× RN → RN ), and ẋ represents d
dtx(t).

Supposing that f obeys a Lipschitz condition, continuous variation of the initial
point x0 produces a continous variation of the curve of the ODE starting at x0.
More precisely, if x(t) represents x at time t, then x0 7→ x(t) ∈ RN → RN is a
continuous function.

If on some convex D ⊆ R× RN ,

‖f,x(t, x)‖ ≤ B, where (t,x) ∈ D

We may derive a Lipschitz condition:

‖f(t,x2)− f(t,x1)‖ ≤ B‖x2 − x1‖

Recalling again the little-oh notation, by Taylor’s theorem, we have:

f(t,x2)− f(t, x1) = f,x(t,x)(x2 − x1) + o(‖x2 − x1‖)

Now, let us examine the variational system for the solution x(t; t0,x0), which
is a matrix ODE defined by the following:

Ẋ = f,x(t, x(t; t0,x0))X(t), andX(t0) = I

This system has a unique solution:

X(t; t0, I) = exp
(∫ t

t0

f,x(s,x(s; t0,x0)) ds

)
Given (t0,x1) and (t0,x2) in D, we may show that the solutions x(t; t0,x1)

and x(t; t0,x2) (subsequently referred to as x1(t), and x2(t), respectively) are
close when ‖x2 − x1‖ is small.

x1(t) = x1 +
∫ t

t0

f(s,x1(s)) ds,

which may be applied for both x1 and x2, so:

x2(t)− x1(t) = x2 − x1 +
∫ t

t0

f(s,x2(s))− f(s,x1(s)) ds

Making use of the Lipschitz condition and Gronwall’s inequality, we can
obtain the bound:

‖x2(t)− x1(t)‖ = ‖x2 − x1‖eB(t−t0)

furthermore,

x2(t)− x1(t) = X(t; t0, I)(x2 − x1) + o(‖x2 − x1‖)
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This means that the solutions of the ODE are continuous and moreover
differentiable with respect to the initial conditions. (Of course the Lipschitz
condition is highly necessary here.)

An interesting observation is that the argument of continuity with respect to
initial conditions holds when taking into consideration only some components
of x. If some components are bound to the Lipschitz condition, and all others
held fixed, the same conclusion still applies. This technique does not allow us
to improve the claims on differentiability or continuity, but it vastly expands
the range in which the claims of differentiability can be made, with respect
to those specific initial conditions. For example, if ‖f,xn(t,x)‖ ≤ B, then we
are guaranteed differentiable continuity with respect to xn, regardless of f ’s
dependence on the rest of the initial conditions.

5.2 Stability under perturbation of parameters

Given the very straightforward results regarding initial conditions that ODEs
obey, one simple way of handling parameters in an ODE based dynamical system
is to embed the parameters into initial conditions. Suppose we are working with
an n dimensional system with m parameters. Let x0 ∈ RN , and a ∈ RM . We
may define g ∈ R×RN ×RM → RN ×RM , such that g(t,x,a) = fa(t,x), and
g(t,x,a)k = 0 for k > n. It should be evident that any solution xa(t; t0;x0) of
ẋ = fa(t, x) implies y = (x,a) is necessarily a solution of ẏ = g(t, y,a).

Using this equivalence, we may make claims regarding the continuity of
solutions with respect to parameters; namely that if the initial conditions are
fixed, then the solution may be continuous with respect to the parameters.

For example, consider the Riccati system.

ẋ = a + bx2

This is a system of one variable and two parameters, but may be rewritten as a
system of three variables:

ẋ = a + bx2

ȧ = 0
ḃ = 0

Examining specifically the partials with respect to a or b, we find that
g,a(t, [x, a, b]) = 1, and g,b(t, [x, a, b]) = x2, both are respectively constant. This
means that the mapping: (a, b) 7→ x(t; t0, [x0, a, b]) is continuous and differen-
tiable. Moreover, this holds regardless of x0 or t0.

In this particular case, the reason why this works out so easily is because f is
linear with respect to its parameters. Fortunately, most reasonable parameteri-
zations will be linear. Furthermore, if one wishes to have f dependent on both
a parameter a and some function of a, say a2, it is always possible to introduce
a second linear parameter called b which has that value at all times.

5.3 Planar systems

Let us examine what can be concluded if the system is planar (n = 2). The
treatment of fixed points and periodic orbits is fairly well studied in this case,
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and many results (particularly the Poincare-Bendixson theorem) highlight con-
ditions for the existence and behavior of such points and cycles. Unfortunately,
since a parameter-embedded system will almost certainly have more than two
dimensions, the theorems will be difficult to apply directly. Indeed, with certain
systems, one may observe situations where an attracting fixed point varies in
between a repelling one or a saddle point, and different fixed points may merge
or even disappear altogether.

Consider the system:

ẋ = αx− y

ẏ = x + αy

When α is varied, the solution of this system changes from logarithmic spirals
originating from the origin (α > 0), to concentric circles (α = 0), to spirals
converging towards the origin (α < 0). While each solution originating from
some specific condition is itself continuous with respect to α, the A and Ω limit
sets have some very clear discontinuity at α = 0.

We can see disappearing fixed points in the following system:

ẋ = x2 + α− y

ẏ = x2 + α + y

Here, there are fixed points where the curve x2 + α intersects the x axis. For
α > 0, they disappear entirely (at least in the real plane). For α = 0, there is a
saddle point with (seemingly) one positive eigenvalue, and the other zero. For
α < 0, there is one saddle point and one repelling point.

The behavior of periodic systems under parameters is highly studied. Jack
Hale discusses a frictionless pendulum system in [30], and demonstrates how
the system subtly changes when damping is applied. In this case the solutions
behave in a much more predictable manner, where all the fixed points remain
unchanged in terms of their location, but some fixed points transition from
neutral to attracting to repelling, exactly as in the case of the spirals above.

For simple linear cases, the roles of fixed points have been extensively dis-
cussed in terms of their eigenvalues, and the variation of parameters only yields
changes in these eigenvalues, and thus it is not difficult to see what happens
when a particular parameter is changed. However, in nonlinear systems, we will
be subject to situations akin to the merging and vanishing fixed points.

5.4 Strange attractors in ODEs

One can always draw a Jordan curve in a two dimensional system and examine
the paths of solutions across the curves. Examining these traversals can reveal
locations of fixed points and other properties of the system. In higher dimen-
sions, it is not possible to do this, and things become much more complicated.
Trajectories that seem contained around a specific locus may escape that locus
and drift off to another one. These sorts of systems tend to be strange at-
tractors, which exist in continuous systems as well. Strange attractors are also
defined to be chaotic when nearby initial points separate. The most celebrated
strange attractors in continuous systems are Lorenz’s weather model, and the
Rossler attractor. Despite having the smoothness associated with differential
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Figure 78: Lorenz Attractor. Figure 79: Rossler Attractor.

equations, these systems still manage to have the unpredictable nature that is
associated with discrete systems.

In order to behave so unpredictably, the Lorenz and Rossler systems must
necessarily be nonlinear, but they are not tremendously nonlinear. They of-
ten contain only one or two nonlinear terms, but this is enough to generate
tremendously complex dynamics.

Lorenz system:

ẋ = σ(y − x)
ẏ = ρx− y − xz

ż = xy − bz

Rossler system:

ẋ = −y − z

ẏ = x + ay

ż = b + zx− cz

The Lorenz system was originally derived from a model of atmospheric con-
vection by Edward Lorenz in 1960. What started out as an exercise in building
a more predictable weather model soon became a famous testament to the un-
predictability of the weather. The most common representation of the Lorenz
attractor features the parameterization: σ = 10, ρ = 28, b = 8/3. This pro-
duces the classical butterfly-shaped orbit, with two main loops about which
orbits can rotate. A minute perturbation in starting conditions however, can
drive two orbits to rotate about separate nodes. There do exist cyclical orbits
which circle the left and the right nodes in every combination of sequences. The
peculiar nature of these orbits led to the term “Strange Attractor”, which is a
wonderfully appropriate description of these kinds of systems.

The fragile dependence on initial conditions also led Lorenz coin to the fa-
mous phrase often used to explain chaos, the “butterfly effect”, that “The flap
of a butterfly’s wings in Brazil could set off a tornado in Texas”.
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While the Lorenz system is very well known, it is only one of many significant
examples of strange attractors that have been discovered in examination of real
systems. Another system of interest is the Rossler attractor, discovered by Otto
Rossler [22] in 1976 through examination of chemical kinetics. This particular
system exhibits something resembling the kneading behavior that is common in
quadratic discrete systems. The system appears to resemble a Möbius shape,
with ribbons of the orbits folded back into the main loop at every half twist.
Typically the Rossler system is parameterized with: a = 0.2, b = 0.2, c = 5.7.

Both of these systems are stable (inasmuch as the orbits will not spin off
towards infinity) regardless of initial points. Choosing points that are far away
from the origin tend to have the effect of adding “energy” into the system, in
that the paths will tend to orbit the foci at a great distance, but they will
never diverge to infinity. It is a matter of curiosity if there do exist continuous
systems for which some initial points necessarily diverge where others would
not, forming Julia-like sets for the continuous systems.

5.5 Dimension in Strange Attractors

The orbits of strange attractors, interestingly enough, are fractals and have frac-
tal dimension. Because of the generally nonterminating nature of the orbits, the
curves take up a lot of room and can appear to describe a two dimensional sur-
face in three dimensional space. As it turns out, numerical estimates place the
Hausdorff dimension of the Lorenz attractor to be approximately 2.0627160!
This means that the planes formed by the orbits of the Lorenz attractor have
more information than a mere two dimensional surface can provide. This fasci-
nating result was obtained numerically by Viswanath in [8].

This calculation is made by finding initial points which produce periodic
orbits in the Lorenz system. Depending on precisely the points chosen, the
orbits may alternate between the left and the right wings of the Lorenz system
in any combination conceivable before returning to where the orbit started.
Specifically, this branching is classified according to the Poincare section, at
z = 27. These various patterns are referred to as symbol sequences, and are of
the form AB, AABB, AAAB, and so on. Because the Lorenz system is chaotic,
these periodic cycles must necessarily be repelling, so very precise numerical
calculation is necessary. The algorithm described in [8] involves using 100 digit
arithmetic for this purpose.

Examining the intersection of these cycles with the Poincare section z = 27,
the resulting shape takes on the appearance of a Cantor set. The density of
points increases as symbol sequences become more complicated. A Cantor set
may be thought of as being an infinite binary tree, whose branches directly cor-
respond to the branches in the symbol sequence. This behavior is also discussed
extensively in [9]. The distance between starting points of symbol sequences
depends in a peculiar manner upon the actual sequences. For two symbol se-
quences identical in the first ith digits, the distance in their starting points is
roughly 0.5i. For symbol sequences whose final digits are common, the distance
is about a factor of 10−5 smaller by each symbol at the end. This greatly stresses
the significance of how orbits of all periods exist in this chaotic attractor.

In an important formula for discrete systems, given the characteristic multi-
pliers for points in an m−cycle, where F is an invertible map of the plane and
Fm(xi) = xi, and λi is the multiplier at each xi, we may define each Dm as
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satisfying the equation:

m∑
i=1

λDm−1
i = 1

The limit of Dm is the Hausdorff dimension of the attractor. Such a discrete
system may be found by examining the cross sections of the Lorenz cycle. In
[8], it is shown that this converges quite quickly to near 2.0627160, and that
this is indeed the dimension of the Lorenz attractor.

For other continuous systems, the behavior may not be of this binary vari-
ety. The Rossler system, in particular, exhibits a kind of folding which is not
analogous to a binary partition. It is however still possible to take a cross sec-
tion around the main loop and calculate the intersection of the Poincare section
with high period cycles and estimate the dimension via the above method. In
my research I have not found accurate estimations of this number, but it is
presumably just above 2, like the dimension for the Lorenz attractor.

5.6 Predictability

While the dynamics in some continuous systems may be very hard to predict,
important information may be derived through an investigation of the fractal
dimension of the system. This indicates roughly how much area the curve takes
up, or rather, how wiggly it is. Generally, the higher the dimension, the harder
it is to predict an orbit’s eventual behavior.

One of the ways of estimating the dimension of a system is through exam-
ining Lyapunov exponents. There are a large number of published methods for
determining these numbers, so I shall just mention a few relevant methods. The
following is a discussion of the estimation of Lyapunov exponents for continuous
systems from Leonov in [5].

If the ODE is n-dimensional, the Lyapunov exponent ν will be an n-dimensional
vector, describing how perturbations of the initial point will affect long term
changes in the attractor, in comparison to exponential divergence. The behav-
ior of Lyapunov exponents is analogous to discrete dynamics. A positive ν1

implies that the distance between two nearby initial points will diverge, a value
near zero implies that there will be little significant variation, and an exponent
below zero implies that the orbits between two initial points will converge. Sys-
tems may also have both positive and negative Lyapunov exponents. Consider
specifically the Lorenz system: along its surface, nearby orbits are very unpre-
dictable, but anything that starts away from the two wings of the butterfly
eventually flattens out to meet the surface of the actual attractor. Chaotic sys-
tems typically have Lyapunov exponents which are negative, zero, and positive,
all at once. When all exponents are negative, the system will produce a an
attracting fixed point, when all are negative but one, which is zero, the system
will form an attracting cycle. When m are zero and the rest are negative, the
system lies on an m-dimensional manifold should result.

Let us consider a simple homogenous system:

dx

dt
= A(t)x, x ∈ RN

Again, let X(t) be the fundamental solution for the system, where X(0) =
I. The square roots of the eigenvalues of matrix X(t)∗X(t) are the singular
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numbers of X(t), ρ1(t) ≥ ρ2(t) ≥ . . . ≥ ρn(t). The Lyapunov exponents may
be defined as:

νj = log lim
t→∞

ρj(t)1/t

This is a term that does not lend itself to being calculated directly. Leonov,
in [5], describes a very complex way to manipulate eigenvalues and other known
constraints on the system to produce precise bounds on each νj . When the
system is nonlinear, the above technique may be approximated via using a
linearization of the system.

6 Discrete Dynamical Systems

Without the shelters of continuity or conformality, things can become very com-
plicated indeed. Even if we are only considering two dimensions, infinity ceases
to be a point, like it is on the Riemann Sphere. Points may diverge to infinity,
but if they go in different directions, their dynamics may be entirely different.

In this last section of this paper, I would like to discuss the application of
parameter space to discrete dynamics in broad terms. For convenience sake,
the systems we will be concerned with shall be continuously differentiable and
parameterized linearly:

fa ∈ C1(X → X)

The function fa should have a linear dependence on its parameters, ie. a 7→ fa

is a linear operation. This is a strong condition, as it considerably limits the
kinds of parametrical functions we will consider, and disallows behavior such as
phase shifting and changing frequencies.

6.1 Equivalences and isomorphisms

It is important to show that many functions with apparently different dynamics
may in fact represent the same system. This may be illustrated through simple
conjugation. A function f ∈ X → X is conjugate to g if there exists a bijective
function φ such that:

f = φ−1 ◦ g ◦ φ

Thus, we can see inductively that

fn+1 = fn ◦ f = φ−1 ◦ gn ◦ φ ◦ φ−1 ◦ g ◦ φ = φ−1 ◦ gn+1 ◦ φ

Symbolic dynamics translates quite well outside of complex analysis, and
much insight can be gained from examining the equivalence of conjugations of
dynamical systems. In complex analysis, the 2nd degree polynomial az2 + bz + c
can be conjugated using möbius transformations to just the case z2 +c. Outside
of this case, some parameters in other systems may be found to be unnecessary.
Examining the two dimensional quadratic systems that I had originally studied:

xn+1 = a1x
2
n + a2xnyn + a3y

2
n + a4xn + a5yn + a6

yn+1 = b1x
2
n + b2xnyn + b3y

2
n + b4xn + b5yn + b6

It is possible to eliminate several parameters based on equivalence alone. It is
also likely that some high dimensional subspaces in the parameter space are
equivalent to others based on some elaborate folding transformations.
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Figure 80: Ring cen-
tered on 0 with r ∈
[.25, .3].
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6.2 Weakly attracting fixed points

The concept of weakly attracting fixed points seems rather surprising, since in
complex analysis, the distinction between attracting, neutral, and repelling is
very straightforward. With multiple dimensions, fixed points can become very
unpredictable. Strongly attracting fixed points in general dynamical systems
most closely resemble the attracting fixed points in complex analysis. However,
even if all the absolute values of the eigenvalues of the function’s derivative are
less than one, at some fixed point, the norm of the Jacobian matrix may still be
greater than one. This means that points near the fixed points may be drawn
in along the correct axis, but the function is still not a contraction in any ball
around the fixed point. Consider the following map:

f(x, y) =
(

x2 + 2xy

2x− 2x2 − 2xy

)
There are fixed points in this map at (0, 0) and (1, 0), and the eigenvalues of the
derivative at both points are both zero. If one follows the orbits of points near
each of these fixed points, one can see that the orbits eventually fall into the
nearest fixed point. However, the norms of the derivatives at the fixed points are
greater than one, regardless of norm chosen. Examining closely the point (0, 0),
we can see that any point on the diagonal line y = x is first pushed away from
(0, 0), but then drawn back in. This means that there is still no ball in which
the function is a contraction mapping, but there is a ball in which all points are
guaranteed to be drawn in. In this respect these weakly attracting fixed points
behave similarly to neutral fixed points in the complex analysis sense.

The following images display a ring around the point (0, 0) and its image
under the mapping. The projection exhibits a very peculiar twisting behavior,
and it is possible to see how some points chosen near the fixed point will always
be pushed away. However, there is also a transformation that spins the ring
around, so points that are pushed away will always rotate to one of the angles
at which they are pulled back in.

6.3 What it means to be chaotic

As in continuous systems, chaos can originate from orbits becoming drawn to-
wards multiple fixed points or cycles, and alternating between them. Chaos
can result from some irrational folding of the phase space into itself. Orbits
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under some rational map R in C generally will be drawn into some sort of
periodic structure, save for points chosen on the Julia set. The Julia set in
a complex map is a fixed component, invariant under R, and also having the
property that any two distinct points chosen in the Julia set, no matter how
close together, will eventually be separated. It is in this way that Julia sets
are chaotic structures under rational maps. In the complex sense, orbits exhibit
chaotic behavior in relatively rare situations, as Julia sets are fairly narrow. In
both continuous and discrete systems, orbits may be chaotic in a much broader
range of circumstances. Chaos is actually surprisingly common in both types of
systems.

One of the defining factors in chaotic systems is the role of repelling cycles.
Often chaotic dynamics are formed by the existence of a couple of stable or
somewhat stable fixed points or cycles, and the chaotic behavior arises from
points interacting with both cycles. However, when this is the case, multitudes
of cycles manage to become balanced in between the two cycles, and these
precarious bands tend to be neutral or repelling cycles. These cycles are, in fact,
dense in chaotic systems. Interestingly, in chaotic systems there are necessarily
repelling cycles of all periods. Recall that the Julia set is the closure of both
repelling cycles and chaotic orbits. It has been established several times (via
Sarkovskii’s theorem as well as the well known paper by Yorke and Li [23]), that
a necessary feature for chaos to exist is for the given system to have a cycle of
period three.

6.4 Stability and Lyapunov exponents

Lyapunov exponents are a tool for measuring the stability in a system. They
tend to be an invaluable tool for the purposes of this measurement, however
they are often used or defined in different ways. At the end of the day, each
use or definition seems to be getting after the same general concept, but it is of
crucial importance to clarify how the exponent is used in this paper and what
definitions and approximations we use to obtain it.

When all of the Lyapunov exponents are negative, there tend to be attracting
fixed points or cycles. When one of the exponents is zero, there tends to be
some kind of neutral plane which neither attracts nor repels. If one exponent is
zero and the rest are zero or negative, then there will be an attraction towards
something like a limit cycle, as the one plane is neutral and permits movement,
but the other exponents draw in nearby points. Positive exponents inject some
form of chaotic behavior. If there is one positive exponent and the rest are
negative, there is likely to be some kind of limit cycle, along which the movement
is unpredictable. For instance, there could be an angle doubling map.

The balance of these can form quite interesting structures, especially in work-
ing with more than two dimensions. When I had been investigating strange
attractors in three dimensions, I ran across attractors which appeared to be
just loops of points in three dimensional space. Since those attractors had been
picked up by my program as having a positive Lyapunov exponent, it would
be likely that chaotic behavior was taking place on that loop, probably in the
form of an angle doubling map of sorts. Other times, my program would find
attractors which seemed to be like two dimensional manifolds in three dimen-
sional space. It seemed clear that what was occurring as the loops transformed
into the planes was that ν2 was changing sign from negative to positive. Thus
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as the degree of instability along that dimension increased, the system came to
express more information than just that of a one dimensional manifold in space.
Bearing this in mind, it should come as no surprise that Lyapunov exponents are
also useful tools to also measure the dimension of an attractor. Unfortunately,
a detailed analysis of how this is done is outside of the scope of this paper.

Previously, we had seen a little discussion of Leonov’s bounds of Lyapunov
exponents for the continuous case. He also provides a thorough analysis of the
discrete case as well. We shall begin by observing a simple linear system and
comparing its asymptotic properties to more useful cases. Consider the following
simple system:

xk+1 = A(k)xk

This system will have a fundamental matrix X(k), such that xk = X(k)x0:

X(k) =
k∏

j=0

A(j)

Recall this kind of construction from the previous discussion of continuous sys-
tems.

The Lyapunov exponents νj in the discrete case are defined as:

νj = log lim
k→∞

ρj(k)1/k

Where ρj are the square roots of the eigenvalues of X(k)∗X(k).
It is possible to obtain a variety of bounds on each ρj by finding quadratic

forms such that the application of the forms on each A(k) satisfies several elabo-
rate inequalities. The general procedure starts with finding a symmetric matrix
H with no less than m positive (or negative) eigenvalues. The sign of the num-
ber of eigenvalues will determine whether H will constrain either ρN−m+1 or ρm

from above or below, respectively. H will define a quadratic form V (x) = x∗Hx.
Then suppose ∃λ > 0, and z ∈ Ω where Ω is either {x ∈ RN |V (x) < 0} or RN ,
depending on whether we are looking for a lower or upper bound, respectively.
Suppose that:

1
λ2

V (A(k)z) ≤ V (z).

Then ∃β > 0 such that ρm(k) ≥ βλk, ∀k ∈ N×. Note that this final bound does
not depend directly on H or z, but as long as they exist, this bound may be
asserted. Conversely, if ∀k ∈ N×, det A(k) 6= 0 then:

1
λ2

V (A(k)∗z) ≤ V (z).

implies that γ such that ρn−m+1(k) ≤ γλk, ∀k ∈ N×. Therefore we may find
both upper and lower bounds on each ρj . The advantage of this approach is that
it is possible to continue to find better values of λ such that one can produce
tighter and tighter bounds. From the very beginning we can see that there is
a dual nature to this procedure. Leonov continues this method, but it involves
more intricate nuances in the different qualities of the upper and lower bounds.
Regardless, the above results are enough to derive some simple bounds on each
νj . Because νj is defined as the limit of an exponent, and ρj(k) ≥ βλk, then:

νj = log lim
k→∞

ρ(k)1/k ≥ log lim
k→∞

β1/kλ = log λ
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Leonov continues to produce Hermitian forms that make use of these con-
straints in order to place bounds on the Hausdorff dimension of the attractor.
I shall not follow through his argument, but it is an example of one of the
ways in which analysis of Lyapunov exponents may reveal volumes regarding
the dynamics of the system.

From a computational perspective, it is also useful to estimate Lyapunov
exponents not as a vector, but as a single term. When this is the case, the
single term, ν, is ν1, the largest Lyapunov exponent. It is important to see
how it is calculated though, as it would be almost impossible to fit the previous
analysis into a simple computer program. One way of estimating this, is to
choose random points near the initial point of the orbit under consideration,
and compare their divergence from the orbit, though it is important to note
that this method is only appropriate for approximations. After each application
of the function, they would be scaled back towards a uniform distance from the
next iterate of the point. This was the method originally used in Paul Bourke’s
page for creating strange attractors [20].

ν ≈ lim
n→∞

1
n

n∑
i=0

log
‖f(xi + δvi)− f(xi)‖

δ

Typically, v0 would initially be a randomly chosen unit vector, but

vi =
f(xi + δvi)− f(xi)
‖f(xi + δvi)− f(xi)‖

where δ would be small. Examining this approach, the natural thing to do is to
take the limit as δ → 0, and we find that the term under the logarithm is:

lim
δ→0

‖f(xi + δvi)− f(xi)‖
δ

= ‖f ′(xi)vi‖

It is easy to suspect that the term is only ‖f ′(xi)‖; however, through nu-
merical experiments, this would not seem to be the case. If we actually choose
random points offset from xi each iteration, we will approximate the actual
exponent. So what appears to be taking place here is some dependence on the
nonlinear properties of f , since its derivative is not enough to do the job.

6.5 Analogy to Complex Analysis

While things become progressively more complicated by taking away confor-
mality and adding dimensions, it is still possible to make analogies to complex
analysis. It is possible to describe basins of attraction for dynamical systems,
and therefore it should be possible to describe what happens to these basins as
parameters are varied. (Unfortunately, these are much more difficult to measure
as there is not a clear way to find this basin without testing a lot of points.)

Ben Bielefeld, et al. [24] studied the nonholomorphic family of functions
fα ∈ C → C, f = z 7→ |z|2α−2z2 +c. This case was also studied by Szczyrek [11]
as well as by Bruin and Van Noort [15]. While it is nonconformal, it still persists
in being quasiconformal, so it is not tremendously estranged from Complex
Analysis. It is observed that while certain properties familiar to holomorphic
functions do break down, others are able to be maintained. Concepts such as
the Mandelbrot and Julia sets still remain intact, though the Julia sets become
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Figure 83: Mandel-
brot set with α = 1.5.

Figure 84: Mandel-
brot set with α = 1.0.

Figure 85: Mandel-
brot set with α = 0.8.

Figure 86: Julia set at
c = −1 with α = 1.5.

Figure 87: Julia set at
c = −1 with α = 1.0.

Figure 88: Julia set at
c = −1 with α = 0.8.

smooth for some α > 1. The Julia sets remain connected, so it is still possible
to analyze external rays. However, certain things become totally lost outside
the nonconformal setting. For instance, periodic attractors do not necessarily
attract the critical point, which overturns the method by which the Mandelbrot
set is most often computationally determined. Some images of Mandelbrot and
Julia sets under these mappings are presented on the following page.

Looking further beyond the scope of complex analysis, many more compli-
cations can arise. Julia-like sets do not necessarily need to be connected, and in
more than one dimension, often critical points cease to exist entirely. Nonethe-
less, when functions are parameterized and perturbed only slightly, periodic
orbits and their basins of attraction tend to continue to exist and be perturbed
as well. The invariant sets that are produced by strange attractors are necessar-
ily compact, and thus they should have borders as well. These fractal borders
are what most closely resemble Julia sets in complex analysis. In [6], it is shown
that when multiple stable cycles exist, there may be entangled boundaries with
definite fractal properties. It would make sense for there to be some kind of
Mandelbrot-like set in parameter space which abstractly governs the dynamics
of all of these attractors.

7 Conclusion

In this paper, we have discussed a multitude of dynamical systems, and ad-
dressed the relevance of parameter space in each of them. We have seen how
the smooth behavior of continuous systems is affected by perturbations in pa-
rameters, and seen how strange attractors may emerge in such systems. Addi-
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Figure 89: Julia set at
c = −0.1264 + 0.6496i
with α = 1.5.

Figure 90: Julia set at
c = −0.1264 + 0.6496i
with α = 1.0.

Figure 91: Julia set at
c = −0.1264 + 0.6496i
with α = 0.8.

tionally, we have seen the complex case, in which dynamics are controlled by
intricate combinatorial patterns that can be described symbolically. The most
famed example of parameter space in complex analysis is the Mandelbrot set,
which describes both the structure of Julia sets, and the behavior of the orbits
of 0. Even though the complex plane holds a great range of dynamics, it behaves
in a fundamentally one dimensional manner under conformal mappings. When
this conformality is removed, as we have seen in the case of the Hénon map,
there also exists a parameter space that may be represented in a manner as to
describe the dynamics under those parameters. We have seen several portions of
the Hénon parameter map, and the correlation of the structure of those regions
with the structure of the Julia-like sets.

Overall, parameter space can tell us a great deal about the behavior of a
dynamical system. Particularly, it can show us where regions are that express
different kinds of long-term behavior. Examining these maps often can lead
to discovery of surprising bits of unexpected behavior. The density of stable
sections in the chaotic region of the Hénon parameter map is particularly sur-
prising, as it is analogous to how repelling periodic cycles are dense in chaotic
systems. This suggests that if we have parametric control over a system and
it is in one of these chaotic regions, we could coax just about any stable peri-
odic cycle out of the system by a very slight perturbation of parameters. The
usefulness of chaos in systems has been well discussed in “Controlling Chaos”
[4], which discusses in detail the applications of this technique to real world
situations.

In this paper we have illustrated the Hénon parameter map via using colors
to show periods and Lyapunov exponents. The images used were produced by
carefully sampling initial points and taking averages over those points that did
not diverge. It would be worthwhile in future research to examine carefully
what points are necessary to choose in order to obtain accurate estimations of
these values. Furthermore, this would drastically reduce the computation cost
for mapping out the features of the parameter space. There are many other
mysterious regions in the Hénon parameter map, specifically, and it would be
worthwhile to see precisely what is taking place in these regions. Specifically, I
would very much like to see what dynamics are causing the stable sections to
jump out to the areas that diverge to infinity. Many fascinating structures and
behavior have become visible by observing the Hénon map from a parametrical
perspective, and it would prove fruitful to see how this analysis plays out in
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other dynamical systems, to observe what discoveries could be made in those
domains.

A Source Code

A.1 Common Files

These files are concerned with loading and saving images. These files can pro-
duce Windows Bitmap images. This is how I produced most of the graphics
that are included in this paper. The function “WriteBMP(filename)” saves a
bitmap of what is included in the two dimensional array “view”. This is plotted
such that the coordinates resemble those commonly used in mathematics, where
“view[0][0]” is the bottom leftmost pixel, (containing the smallest value in both
x and y axes), and “view[RES-1][RES-1]” is the top rightmost pixel, (containing
the largest value in both axes). This is done to ensure that the images are not
flipped when presented in the axes in this paper.

A.1.1 base.h

#ifndef BASE_H

#define BASE_H

#include <math.h>

struct color

{

double R,G,B;

color() : R(0), G(0), B(0) {}

inline color(double r, double g, double b) : R(r), G(g), B(b) {}

void flatten()

{

if(R<0) R=0;

else if(R>1) R=1;

if(G<0) G=0;

else if(G>1) G=1;

if(B<0) B=0;

else if(B>1) B=1;

}

};

#define RES 2000

extern color view[RES][RES];

#endif

A.1.2 base.cpp
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#include "base.h"

color view[RES][RES];

A.1.3 bitmap.h

#ifndef BITMAP_H

#define BITMAP_H

void WriteBMP(char filename[]);

#endif

A.1.4 bitmap.cpp

#include <fstream>

#include "bitmap.h"

#include "base.h"

using namespace std;

void writeDWORD(ofstream &Out,unsigned int d);

void writeWORD(ofstream &Out,unsigned int d);

void writeCHAR(ofstream &Out,unsigned int d);

void WriteBMP(char filename[])

{

ofstream Out;

Out.open(filename,ios::binary);

if(Out.fail())

return;

Out << "BM"; //Windows Bitmap ID

writeDWORD(Out,36+3*RES*RES); //Filesize

writeDWORD(Out,0); //some stupid thing

writeDWORD(Out,0x36); //offset of bitmap data

writeDWORD(Out,0x28); //windows standard info header size

writeDWORD(Out,RES); //width of bitmap

writeDWORD(Out,RES); //height of bitmap

writeWORD(Out,1); // "planes" in bitmap

writeWORD(Out,24); // image depth in bitmap

writeDWORD(Out,0); // compression

writeDWORD(Out,0); // something about data size...

writeDWORD(Out,2834); // XResoultion...

writeDWORD(Out,2834); // YResolution

writeDWORD(Out,0); //colors (0 because 24bit)

writeDWORD(Out,0); //important colors

// forward reading of the y coordinate should produce

// the image being upside-down, however, the Windows BMP
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// file format encodes the y coordinate upside-down anyway

// so the correct orientation is preserved.

for(int y=0;y<RES;y++)

for(int x=0;x<RES;x++)

{

writeCHAR(Out,int(view[x][y].B*255));

writeCHAR(Out,int(view[x][y].G*255));

writeCHAR(Out,int(view[x][y].R*255));

}

}

void writeDWORD(ofstream &Out,unsigned int d)

{

writeWORD(Out,d%65536);

writeWORD(Out,d/65536);

}

void writeWORD(ofstream &Out,unsigned int d)

{

Out << char(d%256);

Out << char(d/256);

}

void writeCHAR(ofstream &Out,unsigned int d)

{

Out << char(d);

}

A.2 Attraction Test

This program produces images that display the projection of a region in the plane under
iterations of a quadratic map, through either illustration of the projected region, or
through color.

A.2.1 main.cpp

#include <stdlib.h>

#include <math.h>

#include <iostream>

#include <fstream>

#include <time.h>

#include <vector>

using namespace std;

#include "bitmap.h"

#include "base.h"

double drand() //returns a double between -1 and 1

{

return (double(rand())/RAND_MAX-.5)*2;

}
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double squash(double x)

{

return (1+x/(fabs(x)+1))/2;

}

#define ITERSIZE 1000

#define LYAPUNOVAT 100

#define max(a,b) (a<b ? b : a)

#define min(a,b) (a<b ? a : b)

#define ABS(x) (x<0 ? -x : x)

void main()

{

int i,X,Y;

for(X=0;X<RES;X++)

{

cout << X << endl;

for(Y=0;Y<RES;Y++)

{

double x,y,x1,y1,x0,y0;

x0 = x = ((double)X/RES) * 4 - 2;

y0 = y = ((double)Y/RES) * 4 - 2;

double xr,yr;

//xr = x0 - -0.4541344013;

//yr = y0 - 0.1844711485;

xr = x0 - -0.0104387891;

yr = y0 - 0.2096393646;

xr = xr*xr;

yr = yr*yr;

// this will only use points which are between

// .1 and .2 units from the origin.

if(sqrt(xr + yr)>.1)// || sqrt(xr + yr)<.2)

continue;

double a1,a2,a3,a4,a5,a6;

double b1,b2,b3,b4,b5,b6;

a1 = -0.4252449110;

a2 = 0.4798120060;

a3 = -0.4645527512;

a4 = -0.7605822932;

a5 = 0.5426801355;

a6 = -0.7559434797;

b1 = -1.2936796167;

b2 = -0.7068697165;

b3 = -0.4903103732;
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b4 = 1.8258003479;

b5 = -0.4433118686;

b6 = 1.3196813868;

// this is the number of iterations that the function is applied

for(i=0;i<5;i++)

{

x1 = a1*x*x + a2*x*y + a3*y*y + a4*x + a5*y + a6;

y1 = b1*x*x + b2*x*y + b3*y*y + b4*x + b5*y + b6;

x = x1;

y = y1;

}

// this option is used to draw the destination of the iterated point

// the value of the point is represented as a color. Mid tones represent

// values towards zero, bright or dark colors represent colors that tend

// towards infinity in one direction or another.

// view[X][Y] = color(squash(x),0,squash(y));

// this option displays the inverse of the above: a point is given the color

// of where it was initially located, and placed where it wound up after

// being iterated under the function.

if((x/4+.5) >= 0 && (x/4+.5) < 1 && (y/4+.5) >= 0 && (y/4+.5) < 1)

view[(int)((x/4+.5)*RES)][(int)((y/4+.5)*RES)] = color(x0/4+.5,.5,y0/4+.5);

}

}

WriteBMP("out.bmp");

}

A.3 Cycle Test

This program attempts to find multiple attracting cycles. It samples random points
in parameter space, tests for attracting periodic structures, and samples again to find
separate attracting periodic structures. This program does discard multiple seemingly
attracting cycles when there is chaos. This decision was made due to a drastic number
of false positives.

A.3.1 main.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

double a[6];

double b[6];

#define max(a,b) ((a)>(b) ? (a) : (b))

#define abs(a) ((a)>0 ? (a) : -(a))

#define MAXPERIOD 100

48



#define PERIODCONF 10

#define MAXITERATIONS 10000

#define LYAPUNOVAT 1000

#define PI 3.1415926535897932384626433832795

#define EPSILON .01

#define TESTEPSILON .0001

#define LEFTMOSTEPSILON .1

#define OUTOFBOUNDS 100

#define TESTS 1000000

double drand(double range)

{

return 2*range*((double)rand())/RAND_MAX-range;

}

void randomize_params(double range)

{

for(int i=0;i<6;i++)

{

a[i] = drand(range);

b[i] = drand(range);

}

}

void f(double x, double y, double *x1, double *y1)

{

*x1 = a[0]*x*x + a[1]*x*y + a[2]*y*y + a[3]*x + a[4]*y + a[5];

*y1 = b[0]*x*x + b[1]*x*y + b[2]*y*y + b[3]*x + b[4]*y + b[5];

}

void fprime(double x, double y, double *A)

{

A[0] = a[3] + 2*x*a[0] + y*a[1]; // dx1/dx

A[1] = a[4] + x*a[1] + 2*y*a[2]; // dx1/dy

A[2] = a[3] + 2*x*b[0] + y*b[1]; // dy1/dx

A[3] = a[4] + x*b[1] + 2*y*b[2]; // dy1/dy

}

void near_point(double x, double y, double epsilon, double *x1, double *y1)

{

// using L2 norm

double theta = drand(PI);

*x1 = x + epsilon*cos(theta);

*y1 = y + epsilon*sin(theta);

}

double matrix_norm(double *A)

{

// using derived L2 norm

return sqrt(A[0]*A[0] + A[1]*A[1] + A[2]*A[2] + A[3]*A[3]);

}

double vector_norm(double x, double y)

{
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// using L2 norm

return sqrt(x*x+y*y);

}

void matrix_mult(double *A, double *B, double *C)

{

C[0] = A[0]*B[0] + A[1]*B[2];

C[1] = A[0]*B[1] + A[1]*B[3];

C[2] = A[2]*B[0] + A[3]*B[2];

C[3] = A[2]*B[1] + A[3]*B[3];

}

bool test_cycle(double x0, double y0, int *period,

double *lyap, double *lmostx, double *lmosty)

{

int i,j;

double x=x0 ,y=y0;

double x1,y1, x2,y2;

bool periodic = false;

double lyapunov=0;

double logepsilon = log(EPSILON);

for(i=0;i<MAXITERATIONS;i++)

{

f(x,y, &x1,&y1);

if(i>LYAPUNOVAT)

{

double xe,ye, xe1,ye1;

near_point(x,y,EPSILON,&xe,&ye);

f(xe,ye, &xe1,&ye1);

lyapunov += log(vector_norm(x1-xe1,y1-ye1)) - logepsilon;

}

x = x1; y = y1;

if(vector_norm(x,y) > OUTOFBOUNDS)

return false;

}

lyapunov = lyapunov/(MAXITERATIONS-LYAPUNOVAT);

*lyap = lyapunov;

// x2 and y2 are the last point on the orbit

// if the system is periodic, then this step will catch the period

x2 = x; y2 = y;

*lmostx = x;

*lmosty = y;
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if(lyapunov<0)

for(j=0;j<PERIODCONF;j++)

{

for(i=0;i<MAXPERIOD;i++)

{

f(x,y, &x1,&y1);

if(*lmostx < x1)

{

// catch the leftmost point

*lmostx = x1;

*lmosty = y1;

}

x = x1; y = y1;

if(j!=0)

{

if(*period == i+1)

if(vector_norm(x-x2,y-y2) < TESTEPSILON)

continue;

else

{

periodic = false;

break;

}

}

else

if(vector_norm(x-x2,y-y2) < TESTEPSILON)

{

periodic = true;

*period = i+1;

break;

}

if(vector_norm(x,y) > OUTOFBOUNDS)

return false;

}

if(!periodic)

break;

}

if(!periodic) // system is chaotic then

{

*period = 0;

for(i=0;i<MAXITERATIONS;i++)

{

if(*lmostx < x1)

{

// catch the leftmost point
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*lmostx = x1;

*lmosty = y1;

}

f(x,y, &x1,&y1);

x = x1; y = y1;

if(vector_norm(x,y) > OUTOFBOUNDS)

return false;

}

}

return true;

}

double get_derivative_norm(double x, double y, int period)

{

int i,j;

double x1,y1;

double A[4],B[4],C[4];

B[0] = 1;

B[1] = 0;

B[2] = 0;

B[3] = 1;

for(i=0;i<period;i++)

{

f(x,y, &x1,&y1);

fprime(x,y,A);

matrix_mult(A,B,C);

for(j=0;j<4;j++)

B[j] = C[j];

x = x1; y = y1;

if(vector_norm(x,y) > OUTOFBOUNDS)

return false;

}

return matrix_norm(B);

}

int main()

{

srand(time(0));

int stable_structures = 0;

int chaotic_structures = 0;

int nonattracting_periods = 0;

int questionable_periods = 0;

int valid_periods = 0;
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int two_structures = 0;

int period_and_chaos = 0;

int period_and_period = 0;

int i,j,k;

for(i=0;i<TESTS;i++)

{

printf("\ntest# %d\n",i+1);

randomize_params(2);

int period, period1;

double lyap, lmostx, lmosty;

double lyap1, lmostx1, lmosty1;

double x0,y0;

double x1,y1;

bool good = false;

for(j=0;j<100;j++)

{

x0 = drand(2);

y0 = drand(2);

if(test_cycle(x0,y0, &period, &lyap, &lmostx, &lmosty))

good = true;

}

if(!good)

continue;

stable_structures++;

printf("Found stable structure!\n");

printf("parameters:\n");

printf("%.10f %.10f %.10f\n", a[0], a[1], a[2]);

printf("%.10f %.10f %.10f\n", a[3], a[4], a[5]);

printf("%.10f %.10f %.10f\n", b[0], b[1], b[2]);

printf("%.10f %.10f %.10f\n", b[3], b[4], b[5]);

printf("leftmost x:%.10f y:%.10f\n",lmostx,lmosty);

printf("lyapunov: %.10f\n",lyap);

if(period==0)

{

printf("Structure is chaotic.\n");

chaotic_structures++;

continue;

}

else

{

printf("Structure is periodic with period: %d.\n",period);

double dnorm = get_derivative_norm(lmostx,lmosty,period);

printf("Has derivative norm: %f\n",dnorm);
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if(dnorm > 1)

{

printf("Not technically attracting\n");

nonattracting_periods++;

continue;

}

if(dnorm < .000001)

{

printf("Not sure this is valid...\n");

questionable_periods++;

continue;

}

valid_periods++;

}

// here we have a stable structure somewhere

// let’s try to find another one.

bool good1 = false;

for(k=0;k<20 && !good1;k++)

{

printf(".");

good = false;

for(j=0;j<100;j++)

{

x1 = drand(2);

y1 = drand(2);

if(test_cycle(x1,y1, &period1, &lyap1, &lmostx1, &lmosty1))

good = true;

}

if(vector_norm(lmostx1-lmostx,lmosty1-lmosty)>LEFTMOSTEPSILON)

good1 = true;

}

printf("\n");

if(!good1)

continue;

two_structures++;

printf("Found separate structure:\n");

printf("leftmost x:%.10f y:%.10f\n",lmostx1,lmosty1);

printf("lyapunov: %.10f\n",lyap1);

double dnorm = 2;

if(period1==0)

{

period_and_chaos++;

printf("Structure is chaotic.\n");

}

else

{

period_and_period++;
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printf("Structure is periodic with period: %d.\n",period1);

dnorm = get_derivative_norm(lmostx1,lmosty1,period1);

if(dnorm < .000001)

{

printf("Not sure this is valid...\n");

continue;

}

printf("Has derivative norm: %f\n",dnorm);

}

if(period==1 && period1==1)

printf("This is probably invalid\n");

else if(dnorm < 1)

break;

else continue;

}

printf("\n ***END***\n\n");

printf("The rundown:\n");

printf("Stable Structures: %d\n",stable_structures);

printf("Chaotic structures: %d\n",chaotic_structures);

printf("Nonattracting periodic: %d\n",nonattracting_periods);

printf("Questionable periodic: %d\n",questionable_periods);

printf("Valid periodic: %d\n",valid_periods);

printf("Two Structures: %d\n",two_structures);

printf("Period and Chaos: %d\n",period_and_chaos);

printf("Period and Period: %d\n",period_and_period);

getchar();

return 0;

}

A.4 Hénon Map

These programs display both the parameter space and the phase space under the Hénon
map. The file “attractormap.cpp” plots the parameter space, samples heuristically to
locate non-diverging orbits, and colors the regions accordingly. Filled-in Julia-like sets
and prominent orbits are plotted using “henon julia.cpp”. This program colors regions
according to the ultimate destination of the points in the phase space.

A.4.1 dyn.h

#ifndef DYN_H

#define DYN_H

#include <stdlib.h>

#include <math.h>

#define pi 3.1415926535897932384626433832795
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#define PERIODTEST 5

double drand();

double squash(double x);

struct parameter_set

{

double a;

double b;

parameter_set(double _a, double _b) : a(_a), b(_b) {}

parameter_set() : a(0), b(0) {}

};

parameter_set operator+(parameter_set a, parameter_set b);

parameter_set operator*(double c, parameter_set a);

parameter_set randparam();

struct point

{

double x;

double y;

point(double _x, double _y) : x(_x), y(_y) {}

point() : x(0), y(0) {}

};

inline point operator+(point a, point b);

inline point operator-(point a, point b);

point operator*(double c, point a);

double norml1(point a);

double norml2(point a);

double dist(point a, point b);

point randpoint();

typedef point (*dynmap)(parameter_set*, point);

void analyze(parameter_set a, dynmap f, point x0, int *period, double *lyapunov);

#endif

A.4.2 dyn.cpp

#include "dyn.h"

#include <vector>

using namespace std;

#define ITERSIZE 20000

#define LYAPUNOVAT 5000

#define epsilon 1e-5
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double drand() // returns a double between -1 and 1

{

return (double(rand())/RAND_MAX-.5)*2;

}

double squash(double x) // compresses a value between -1 and 1

{

return (1+x/(fabs(x)+1))/2;

}

parameter_set operator+(parameter_set a, parameter_set b)

{

return parameter_set(a.a+b.a,a.b+b.b);

}

parameter_set operator*(double c, parameter_set a)

{

return parameter_set(c*a.a,c*a.b);

}

parameter_set randparam()

{

return parameter_set(cos(pi*drand()),sin(pi*drand()));

}

inline point operator+(point a, point b) {return point(a.x+b.x,a.y+b.y);}

inline point operator-(point a, point b) {return point(a.x-b.x,a.y-b.y);}

point operator*(double c, point a) {return point(c*a.x,c*a.y);}

double norml1(point a) {return fabs(a.x)+fabs(a.y);}

double norml2(point a) {return sqrt(a.x*a.x+a.y*a.y);}

double dist(point a, point b) {return norml2(a-b);}

point randpoint() {return point(cos(pi*drand()),sin(pi*drand()));}

static vector<point> x(ITERSIZE);

/* analyze

* analyze takes a parameter, a mapping, and an initial point, and determines

* the period and the lyapunov exponent of the resulting sequence.

*

* If the sequence is divergent, lyapunov is set to zero,

* and period is set to -1. If the sequence is periodic, the

* iteration breaks, the lyapunov exponent is calculated, and

* the period is recorded. Otherwise, the sequence is nonperiodic.

* In which case, the period is set to zero, and the lyapunov

* is recorded.

*/

void analyze(parameter_set a, dynmap f, point x0, int *period, double *lyapunov)

{

double logepsilon = log(epsilon);

bool good=true;
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x[0]=x0;

int period0 = 0;

double lyapunov0 = 0;

int i,j;

point xi, xiprev=x0;

for(i=1; i<ITERSIZE && good; i++)

{

x[i] = xi = f(&a, xiprev);

if(norml1(xi) > 1e5)

{

good=false;

period0=-1;

}

if(i>2*PERIODTEST)

for(j=1;j<PERIODTEST && good;j++)

if(norml1(xi-x[i-j])<1e-15 && norml1(xi-x[i-2*j])<1e-15)

{

if(norml1(xi-x[i-j])==0)

period0=1;

else

period0=j;

good=false;

}

if(i>LYAPUNOVAT)

{

point xe = epsilon*randpoint() + xiprev;

xe = f(&a,xe);

lyapunov0 += log(dist(xe,xi)) - logepsilon;

}

xiprev=xi;

}

if(!good && period0==-1)

{

// divergent

*period=-1;

*lyapunov=0;

}

else if(!good && period0>0)

{

// need to recalculate lyapunov with limit period points.

lyapunov0=0;

for(j=0;j<period0;j++)

{

point xe = epsilon*randpoint() + x[i-1-j];

xe = f(&a,xe);

lyapunov0 += log(dist(xe,x[i-j])) - logepsilon;

}
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*period = period0;

*lyapunov = lyapunov0/period0;

}

else // otherwise good, period0 must be zero

{

*period = 0;

*lyapunov = lyapunov0/(ITERSIZE-LYAPUNOVAT);

}

}

A.4.3 attractormap.cpp

// generates a grid of attractors and saves a bitmap "out.bmp"

// representing which ones elicit what behavior.

#include <stdlib.h>

#include <math.h>

#include <iostream>

#include <fstream>

#include <time.h>

#include <vector>

using namespace std;

#include "bitmap.h"

#include "base.h"

#include "dyn.h"

#define INITIALTESTS 5

point f(parameter_set* a, point x)

{

return point( a->a - x.x*x.x + a->b*x.y , x.x );

}

int __cdecl main()

{

srand((unsigned)time(0));

int k,X,Y;

double lyapunov[INITIALTESTS];

int period[INITIALTESTS];

double lyapunov1[INITIALTESTS];

int period1[INITIALTESTS];

// period is 0 if nonconvergent

// -1 if goes to infinity

// a positive integer if any other period
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double resolution = 4.0;

double xcenter = 0.0;

double ycenter = 0.0;

for(X=0;X<RES;X++)

{

cout << X << endl;

for(Y=0;Y<RES;Y++)

{

parameter_set a(-(resolution*X)/RES+.5*resolution+xcenter,

-(resolution*Y)/RES+.5*resolution+ycenter);

analyze(a,f,fprime,point(0,0),&period[0],&lyapunov[0]);

for(k=1;k<5;k++)

{

point x0 = .3*randpoint();

analyze(a,f,fprime,x0,&period[k],&lyapunov[k]);

}

analyze(a,f,fprime,point(0,-1),&period[5],&lyapunov[5]);

for(k=6;k<INITIALTESTS;k++)

{

point x0 = .5*randpoint();

x0.y -= 1;

analyze(a,f,fprime,x0,&period[k],&lyapunov[k]);

}

int sound=0;

for(k=0;k<INITIALTESTS;k++)

if(period[k] != -1)

{

lyapunov1[sound]=lyapunov[k];

period1[sound]=period[k];

sound++;

}

/* the idea here

* is to only consider non-divergent points when drawing lyapunov exponents

* or periods. The initial point may have been just outside the basin of attraction

* and we don’t want to completely dismiss it. Similarly, if it is divergent,

* then it will skew the period and lyapunov exponents for the points that *do* stay

* inside the actual system.

*/

if(sound>0)

{

double ratio = (double)sound/INITIALTESTS;

double lyapunov0=0;

for(k=0;k<sound;k++)

lyapunov0 += lyapunov1[k];

lyapunov0/=sound;

int numberof[PERIODTEST];

for(k=0;k<PERIODTEST;k++)
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numberof[k]=0;

for(k=0;k<sound;k++)

numberof[period1[k]]++;

/*

// This was used to generate maps that featured

// systems with only one period.

int testnumber = 8;

if(numberof[testnumber]>0)

{

float val = (float)numberof[testnumber]/INITIALTESTS;

view[X][Y]=color(val,val,val);

}

continue;

*/

if(numberof[0]>0) // contains chaos, draw as lyapunov

view[X][Y]=color((1-squash(lyapunov0)),0,squash(lyapunov0));

else if(numberof[period1[0]]==sound)

{

// purely periodic (these are important areas)

double r=(double)(period1[0]-1)/PERIODTEST;

view[X][Y]=color((1-r),1,(1-r));

}

else

{

// contains *multiply* convergent periods,

// and *no* non-periodic cycles...

// which is strange indeed.

/*

// This was in place to provide a special color for this situation

// which would contain a fair bit of information, as it turned out

// the extra information was just confusing

int minp=PERIODTEST,maxp=0;

for(k=0;k<sound;k++)

{

if(period1[k]<minp) minp = period1[k];

if(period1[k]>maxp) maxp = period1[k];

}

double r1=(double)(minp-1)/PERIODTEST;

double r2=(double)(maxp-1)/PERIODTEST;

if(numberof[minp]+numberof[maxp] == sound)

view[X][Y]=color(1-r1,1,1-r2);

else

view[X][Y]=color(1-r1,1-squash(lyapunov0),1-r2);

*/

// this coloring produces dark green or brown colors

61



view[X][Y]=color(1-squash(lyapunov0),squash(lyapunov0),0);

}

}

else // divergent

view[X][Y]=color(0,0,0);

}}

WriteBMP("out.bmp");

return 0;

}

A.4.4 henon julia.cpp

#include <stdlib.h>

#include <math.h>

#include <iostream>

#include <fstream>

#include <time.h>

#include <vector>

using namespace std;

#include "bitmap.h"

#include "base.h"

#include "dyn.h"

point f(parameter_set* a, point x)

{

return point( a->a - x.x*x.x + a->b*x.y , x.x );

}

// DOTS is defined to produce an image that is black save for

// the points where an orbit converges to

//#define DOTS

int __cdecl main()

{

srand((unsigned)time(0));

int k,X,Y;

double lyapunov;

int period;

// period is 0 if nonconvergent

// -1 if goes to infinity

// a positive integer if any other period

double resolution = 10.0;

double xcenter = 0.0;
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double ycenter = 0.0;

parameter_set a(-1.4,-.3);

for(X=0;X<RES;X++)

{

cout << X << endl;

for(Y=0;Y<RES;Y++)

{

#ifndef DOTS

point x0 = point((resolution*X)/RES-.5*resolution+xcenter,

-(resolution*Y)/RES+.5*resolution+ycenter);

point x1 = x0;

analyze(a,f,fprime,x0,&period,&lyapunov);

if(period!=-1)

{

for(int i=0;i<5000;i++)

x1 = f(&a, x1);

view[X][Y] = color(.5+.5*squash(x1.x),

.5+.5*squash(lyapunov), .5+.5*squash(x1.y));

}

else // divergent

#endif

view[X][Y] = color(0,0,0);

}}

#ifdef DOTS

// sample random points until one is found which does not explode

bool good = false;

point x2;

for(int tests=0;tests<1000 && !good;tests++)

{

cout << "testing: " << tests << endl;

x2 = 1.5*randpoint();

good = true;

for(k=0;k<10000 && good;k++)

{

x2 = f(&a, x2);

if(fabs(x2.x)>100 || fabs(x2.y)>100)

good = false;

if(k%100==0)

cout << "x: " << x2.x << ", y: " << x2.y <<

endl;

}

}

// then draw its orbit
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// its color is given as a transition from red to blue

// to help illustrate the folding nature of some orbits.

if(good) for(k=0;k<10000;k++)

{

x2 = f(&a, x2);

if(fabs(x2.x-xcenter)<resolution && fabs(x2.y-ycenter)<resolution)

{

float ratio = (float)k/10000;

int ix = RES*(x2.x/resolution + .5 - .5*xcenter);

int iy = RES*(-x2.y/resolution + .5 + .5*ycenter);

view[ix][iy] = color(1-ratio, 0, ratio);

}

}

#endif

cout << "writing BMP\n";

WriteBMP("out.bmp");

return 0;

}
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verse limits. Nonlinearity. 8, (1995)

[13] Christoph Bandt and Karsten Keller. Symbolic dynamics for angle-doubling on
the circle: II. Symbolic description of the abstract Mandelbrot set. Nonlinearity.
6, (1993)

[14] Karsten Keller. Invariant factors, Julia equivalences, and the (abstract) Mandel-
brot set. Springer, New York. (2000)

[15] H. Bruin and M. Van Noort. Nonconformal perturbations of z → z2 + c: The 1:3
resonance. Prepublished, to appear in Nonlinearity.

[16] B. Krauskopf and H. Kriete. Note on non-converging Julia sets. Nonlinearity. 9,
(1996)

[17] Bernd Krauskopf and Hartje Kriete. Hausdorff Convergence of Julia Sets. Non-
linearity. 9, (1996)

[18] Hartje Kriete. Continuity of filled-in Julia sets and the closing lemma. Bull. Belg.
Math. Soc. 6, (1999)
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